12 research outputs found

    FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes.

    Get PDF
    In this work we present the third generation of FAst MEtabolizer (FAME 3), a collection of extra trees classifiers for the prediction of sites of metabolism (SoMs) in small molecules such as drugs, druglike compounds, natural products, agrochemicals, and cosmetics. FAME 3 was derived from the MetaQSAR database ( Pedretti et al. J. Med. Chem. 2018 , 61 , 1019 ), a recently published data resource on xenobiotic metabolism that contains more than 2100 substrates annotated with more than 6300 experimentally confirmed SoMs related to redox reactions, hydrolysis and other nonredox reactions, and conjugation reactions. In tests with holdout data, FAME 3 models reached competitive performance, with Matthews correlation coefficients (MCCs) ranging from 0.50 for a global model covering phase 1 and phase 2 metabolism, to 0.75 for a focused model for phase 2 metabolism. A model focused on cytochrome P450 metabolism yielded an MCC of 0.57. Results from case studies with several synthetic compounds, natural products, and natural product derivatives demonstrate the agreement between model predictions and literature data even for molecules with structural patterns clearly distinct from those present in the training data. The applicability domains of the individual models were estimated by a new, atom-based distance measure (FAMEscore) that is based on a nearest-neighbor search in the space of atom environments. FAME 3 is available via a public web service at https://nerdd.zbh.uni-hamburg.de/ and as a self-contained Java software package, free for academic and noncommercial research

    QSPRpred: a Flexible Open-Source Quantitative Structure-Property Relationship Modelling Tool

    No full text
    Building reliable and robust quantitative structure-property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred\u27s modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrate customized implementations in a "plug-and-play" manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred\u27s functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred. Scientific Contribution QSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models

    Production and Integration of the ATLAS Insertable B-Layer

    No full text
    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector
    corecore