51 research outputs found

    Long time correlations in Lagrangian dynamics: a key to intermittency in turbulence

    Full text link
    New aspects of turbulence are uncovered if one considers flow motion from the perspective of a fluid particle (known as the Lagrangian approach) rather than in terms of a velocity field (the Eulerian viewpoint). Using a new experimental technique, based on the scattering of ultrasounds, we have obtained a direct measurement of particle velocities, resolved at all scales, in a fully turbulent flow. It enables us to approach intermittency in turbulence from a dynamical point of view and to analyze the Lagrangian velocity fluctuations in the framework of random walks. We find experimentally that the elementary steps in the 'walk' have random uncorrelated directions but a magnitude that is extremely long-range correlated in time. Theoretically, we study a Langevin equation that incorporates these features and we show that the resulting dynamics accounts for the observed one- and two-point statistical properties of the Lagrangian velocity fluctuations. Our approach connects the intermittent statistical nature of turbulence to the dynamics of the flow.Comment: 4 pages, 4 figure

    Some relations between Lagrangian models and synthetic random velocity fields

    Full text link
    We propose an alternative interpretation of Markovian transport models based on the well-mixedness condition, in terms of the properties of a random velocity field with second order structure functions scaling linearly in the space time increments. This interpretation allows direct association of the drift and noise terms entering the model, with the geometry of the turbulent fluctuations. In particular, the well known non-uniqueness problem in the well-mixedness approach is solved in terms of the antisymmetric part of the velocity correlations; its relation with the presence of non-zero mean helicity and other geometrical properties of the flow is elucidated. The well-mixedness condition appears to be a special case of the relation between conditional velocity increments of the random field and the one-point Eulerian velocity distribution, allowing generalization of the approach to the transport of non-tracer quantities. Application to solid particle transport leads to a model satisfying, in the homogeneous isotropic turbulence case, all the conditions on the behaviour of the correlation times for the fluid velocity sampled by the particles. In particular, correlation times in the gravity and in the inertia dominated case, respectively, longer and shorter than in the passive tracer case; in the gravity dominated case, correlation times longer for velocity components along gravity, than for the perpendicular ones. The model produces, in channel flow geometry, particle deposition rates in agreement with experiments.Comment: 54 pages, 8 eps figures included; contains additional material on SO(3) and on turbulent channel flows. Few typos correcte

    Intermittency of velocity time increments in turbulence

    Get PDF
    We analyze the statistics of turbulent velocity fluctuations in the time domain. Three cases are computed numerically and compared: (i) the time traces of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the "dynamic" case); (ii) the time evolution of tracers advected by a frozen turbulent field (the "static" case), and (iii) the evolution in time of the velocity recorded at a fixed location in an evolving Eulerian velocity field, as it would be measured by a local probe (referred to as the "virtual probe" case). We observe that the static case and the virtual probe cases share many properties with Eulerian velocity statistics. The dynamic (Lagrangian) case is clearly different; it bears the signature of the global dynamics of the flow.Comment: 5 pages, 3 figures, to appear in PR

    Lagrangian Velocity Statistics in Turbulent Flows: Effects of Dissipation

    Full text link
    We use the multifractal formalism to describe the effects of dissipation on Lagrangian velocity statistics in turbulent flows. We analyze high Reynolds number experiments and direct numerical simulation (DNS) data. We show that this approach reproduces the shape evolution of velocity increment probability density functions (PDF) from Gaussian to stretched exponentials as the time lag decreases from integral to dissipative time scales. A quantitative understanding of the departure from scaling exhibited by the magnitude cumulants, early in the inertial range, is obtained with a free parameter function D(h) which plays the role of the singularity spectrum in the asymptotic limit of infinite Reynolds number. We observe that numerical and experimental data are accurately described by a unique quadratic D(h) spectrum which is found to extend from hmin0.18h_{min} \approx 0.18 to hmax1h_{max} \approx 1, as the signature of the highly intermittent nature of Lagrangian velocity fluctuations.Comment: 5 pages, 3 figures, to appear in PR

    Length Scales of Acceleration for Locally Isotropic Turbulence

    Full text link
    Length scales are determined that govern the behavior at small separations of the correlations of fluid-particle acceleration, viscous force, and pressure gradient. The length scales and an associated universal constant are quantified on the basis of published data. The length scale governing pressure spectra at high wave numbers is discussed. Fluid-particle acceleration correlation is governed by two length scales; one arises from the pressure gradient, the other from the viscous force.Comment: 2 figures, 4 pages. Physical Review Letters, accepted August 200

    Fluid Particle Accelerations in Fully Developed Turbulence

    Full text link
    The motion of fluid particles as they are pushed along erratic trajectories by fluctuating pressure gradients is fundamental to transport and mixing in turbulence. It is essential in cloud formation and atmospheric transport, processes in stirred chemical reactors and combustion systems, and in the industrial production of nanoparticles. The perspective of particle trajectories has been used successfully to describe mixing and transport in turbulence, but issues of fundamental importance remain unresolved. One such issue is the Heisenberg-Yaglom prediction of fluid particle accelerations, based on the 1941 scaling theory of Kolmogorov (K41). Here we report acceleration measurements using a detector adapted from high-energy physics to track particles in a laboratory water flow at Reynolds numbers up to 63,000. We find that universal K41 scaling of the acceleration variance is attained at high Reynolds numbers. Our data show strong intermittency---particles are observed with accelerations of up to 1,500 times the acceleration of gravity (40 times the root mean square value). Finally, we find that accelerations manifest the anisotropy of the large scale flow at all Reynolds numbers studied.Comment: 7 pages, 4 figure

    Acceleration and vortex filaments in turbulence

    Full text link
    We report recent results from a high resolution numerical study of fluid particles transported by a fully developed turbulent flow. Single particle trajectories were followed for a time range spanning more than three decades, from less than a tenth of the Kolmogorov time-scale up to one large-eddy turnover time. We present some results concerning acceleration statistics and the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure

    Influence of compressibility on scaling regimes of strongly anisotropic fully developed turbulence

    Get PDF
    Statistical model of strongly anisotropic fully developed turbulence of the weakly compressible fluid is considered by means of the field theoretic renormalization group. The corrections due to compressibility to the infrared form of the kinetic energy spectrum have been calculated in the leading order in Mach number expansion. Furthermore, in this approximation the validity of the Kolmogorov hypothesis on the independence of dissipation length of velocity correlation functions in the inertial range has been proved.Comment: REVTEX file with EPS figure

    Fully developed turbulence and the multifractal conjecture

    Full text link
    We review the Parisi-Frisch MultiFractal formalism for Navier--Stokes turbulence with particular emphasis on the issue of statistical fluctuations of the dissipative scale. We do it for both Eulerian and Lagrangian Turbulence. We also show new results concerning the application of the formalism to the case of Shell Models for turbulence. The latter case will allow us to discuss the issue of Reynolds number dependence and the role played by vorticity and vortex filaments in real turbulent flows.Comment: Special Issue dedicated to E. Brezin and G. Paris
    corecore