3,544 research outputs found
Diffusive spreading and mixing of fluid monolayers
The use of ultra-thin, i.e., monolayer films plays an important role for the
emerging field of nano-fluidics. Since the dynamics of such films is governed
by the interplay between substrate-fluid and fluid-fluid interactions, the
transport of matter in nanoscale devices may be eventually efficiently
controlled by substrate engineering. For such films, the dynamics is expected
to be captured by two-dimensional lattice-gas models with interacting
particles. Using a lattice gas model and the non-linear diffusion equation
derived from the microscopic dynamics in the continuum limit, we study two
problems of relevance in the context of nano-fluidics. The first one is the
case in which along the spreading direction of a monolayer a mesoscopic-sized
obstacle is present, with a particular focus on the relaxation of the fluid
density profile upon encountering and passing the obstacle. The second one is
the mixing of two monolayers of different particle species which spread side by
side following the merger of two chemical lanes, here defined as domains of
high affinity for fluid adsorption surrounded by domains of low affinity for
fluid adsorption.Comment: 12 pages, 3 figure
Active colloids at fluid interfaces
If an active Janus particle is trapped at the interface between a liquid and
a fluid, its self-propelled motion along the interface is affected by a net
torque on the particle due to the viscosity contrast between the two adjacent
fluid phases. For a simple model of an active, spherical Janus colloid we
analyze the conditions under which translation occurs along the interface and
we provide estimates of the corresponding persistence length. We show that
under certain conditions the persistence length of such a particle is
significantly larger than the corresponding one in the bulk liquid, which is in
line with the trends observed in recent experimental studies
MOCVD-Fabricated TiO2 Thin Films: Influence of Growth Conditions on Fibroblast Cells Culture
TiO2 thin films with various morphologies were grown on Ti substrates by the LP-MOCVD technique (Low Pressure Chemical Vapour Deposition from Metal-Organic precursor), with titanium tetra-iso-propoxide as a precursor. All the films were prepared in the same conditions except the deposition time. They were characterized by X-ray diffraction, scanning electron microscopy, optical 15 interferometry, water contact angle measurements. MOCVD-fabricated TiO2 thin films are known to be adapted to cell culture for implant requirements. Human gingival fibroblasts were cultured on the various TiO2 deposits. Differences in cell viability (MTT tests) and cell spreading (qualitative assessment) were observed and related to film roughness, wettability and allotropic composition
Precursor films in wetting phenomena
The spontaneous spreading of non-volatile liquid droplets on solid substrates
poses a classic problem in the context of wetting phenomena. It is well known
that the spreading of a macroscopic droplet is in many cases accompanied by a
thin film of macroscopic lateral extent, the so-called precursor film, which
emanates from the three-phase contact line region and spreads ahead of the
latter with a much higher speed. Such films have been usually associated with
liquid-on-solid systems, but in the last decade similar films have been
reported to occur in solid-on-solid systems. While the situations in which the
thickness of such films is of mesoscopic size are rather well understood, an
intriguing and yet to be fully understood aspect is the spreading of
microscopic, i.e., molecularly thin films. Here we review the available
experimental observations of such films in various liquid-on-solid and
solid-on-solid systems, as well as the corresponding theoretical models and
studies aimed at understanding their formation and spreading dynamics. Recent
developments and perspectives for future research are discussed.Comment: 51 pages, 10 figures; small typos correcte
Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering
Micron-sized particles moving through solution in response to self-generated
chemical gradients serve as model systems for studying active matter. Their
far-reaching potential applications will require the particles to sense and
respond to their local environment in a robust manner. The self-generated
hydrodynamic and chemical fields, which induce particle motion, probe and are
modified by that very environment, including confining boundaries. Focusing on
a catalytically active Janus particle as a paradigmatic example, we predict
that near a hard planar wall such a particle exhibits several scenarios of
motion: reflection from the wall, motion at a steady-state orientation and
height above the wall, or motionless, steady "hovering." Concerning the steady
states, the height and the orientation are determined both by the proportion of
catalyst coverage and the interactions of the solutes with the different
"faces" of the particle. Accordingly, we propose that a desired behavior can be
selected by tuning these parameters via a judicious design of the particle
surface chemistry
Iris Codes Classification Using Discriminant and Witness Directions
The main topic discussed in this paper is how to use intelligence for
biometric decision defuzzification. A neural training model is proposed and
tested here as a possible solution for dealing with natural fuzzification that
appears between the intra- and inter-class distribution of scores computed
during iris recognition tests. It is shown here that the use of proposed neural
network support leads to an improvement in the artificial perception of the
separation between the intra- and inter-class score distributions by moving
them away from each other.Comment: 6 pages, 5 figures, Proc. 5th IEEE Int. Symp. on Computational
Intelligence and Intelligent Informatics (Floriana, Malta, September 15-17),
ISBN: 978-1-4577-1861-8 (electronic), 978-1-4577-1860-1 (print
Collective dynamics of chemically active particles trapped at a fluid interface
Chemically active colloids generate changes in the chemical composition of
their surrounding solution and thereby induce flows in the ambient fluid which
affect their dynamical evolution. Here we study the many-body dynamics of a
monolayer of active particles trapped at a fluid-fluid interface. To this end
we consider a mean-field model which incorporates the direct pair interaction
(including also the capillary interaction which is caused specifically by the
interfacial trapping) as well as the effect of hydrodynamic interactions
(including the Marangoni flow induced by the response of the interface to the
chemical activity). The values of the relevant physical parameters for typical
experimental realizations of such systems are estimated and various scenarios,
which are predicted by our approach for the dynamics of the monolayer, are
discussed. In particular, we show that the chemically-induced Marangoni flow
can prevent the clustering instability driven by the capillary attraction.Comment: 8 pages, 2 figure
A distributed control for a grasping function of a hyperredundant arm
The paper focuses on the control problem of a tentacle robot that performs the coil function of grasping. First, the dynamic model of a hyperredundant arm with continuum elements produced by flexible composite materials in conjunction with active-controllable electro-rheological fluids is analyzed. Secondly, both problems, i.e. the position control and the force control are approached. The difficulties determined by the complexity of the non-linear integraldifferential equations are avoided by using a basic energy relationship of this system. Energy-based control laws are introduced for the position control problem. A force control method is proposed, namely the DSMC method in which the evolution of the system on the switching line by the ER fluid viscosity is controlled. Numerical simulations are also presente
- …