506 research outputs found

    Does the scatterometer see wind speed or friction velocity?

    Get PDF
    Studies of radar backscatter from the sea surface are referred either to the wind speed, U, or friction velocity, u(sub *). Bragg scattering theory suggests that these variations in backscatter are directly related to the height of the capillary-gravity waves modulated by the larger waves in tilt and by straining of the short wave field. The question then arises as to what characteristic of the wind field is most probably correlated with the wave number spectrum of the capillary-gravity waves. The justification for selecting U as the appropriate meteorological parameter to be associated with backscatter from L-band to Ku-band are reviewed. Both theoretical reasons and experimental evidence are used to demonstrate that the dominant parameter is U/C(lambda) where U is the wind speed at a height of about lambda/2 for waves having a phase speed of C(lambda)

    Gravity wave turbulence in a laboratory flume

    Get PDF
    We present an experimental study of the statistics of surface gravity wave turbulence in a flume of a horizontal size 12×6  m. For a wide range of amplitudes the wave energy spectrum was found to scale as Eω∼ω-ν in a frequency range of up to one decade. However, ν appears to be nonuniversal: it depends on the wave intensity and ranges from about 6 to 4. We discuss our results in the context of existing theories and argue that at low wave amplitudes the wave statistics is affected by the flume finite size, and at high amplitudes the wave breaking effect dominates

    The role of meteorological focusing in generating rogue wave conditions

    Get PDF
    Abstract. Rogue waves are believed to be the consequence of focusing of wave energy. While there are several ways that energy may be focused, we concentrate here on the role of meteorological patterns in generating mixed sea conditions. We demonstrate the sharp increase in the probability of high wave crests for a given significant height when the sea is mixed, i.e., consists of wave trains arriving from very different directions. Then, using a full spectral wave prediction model forced by NCEP winds on the Atlantic Ocean, we illustrate the role of meteorological focusing in enhancing the probability of occurrence of rogue waves

    Observation of gravity-capillary wave turbulence

    Get PDF
    We report the observation of the cross-over between gravity and capillary wave turbulence on the surface of mercury. The probability density functions of the turbulent wave height are found to be asymmetric and thus non Gaussian. The surface wave height displays power-law spectra in both regimes. In the capillary region, the exponent is in fair agreement with weak turbulence theory. In the gravity region, it depends on the forcing parameters. This can be related to the finite size of the container. In addition, the scaling of those spectra with the mean energy flux is found in disagreement with weak turbulence theory for both regimes

    Evidence of energy and momentum flux from swell to wind

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2143-2156, doi:10.1175/JPO-D-15-0213.1.Measurements of pressure near the surface in conditions of wind sea and swell are reported. Swell, or waves that overrun the wind, produces an upward flux of energy and momentum from waves to the wind and corresponding attenuation of the swell waves. The estimates of growth of wind sea are consistent with existing parameterizations. The attenuation of swell in the field is considerably smaller than existing measurements in the laboratory

    Observation of intermittency in wave turbulence

    Get PDF
    We report the observation of intermittency in gravity-capillary wave turbulence on the surface of mercury. We measure the temporal fluctuations of surface wave amplitude at a given location. We show that the shape of the probability density function of the local slope increments of the surface waves strongly changes across the time scales. The related structure functions and the flatness are found to be power laws of the time scale on more than one decade. The exponents of these power laws increase nonlinearly with the order of the structure function. All these observations show the intermittent nature of the increments of the local slope in wave turbulence. We discuss the possible origin of this intermittency.Comment: new version to Phys. Rev. Let

    Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation

    Full text link
    By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we augmented the kinetic equation by an empirical dissipation term modelling the strongly nonlinear process of white-capping. Fitting the two experiments, we determined the dissipation function due to wave breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness). The onset of white-capping can be compared to a second-order phase transition. This result corroborates with experimental observations by Banner, Babanin, Young.Comment: 5 pages, 5 figures, Submitted in Phys. Rev. Letter

    Wave modelling - the state of the art

    Get PDF
    This paper is the product of the wave modelling community and it tries to make a picture of the present situation in this branch of science, exploring the previous and the most recent results and looking ahead towards the solution of the problems we presently face. Both theory and applications are considered. The many faces of the subject imply separate discussions. This is reflected into the single sections, seven of them, each dealing with a specific topic, the whole providing a broad and solid overview of the present state of the art. After an introduction framing the problem and the approach we followed, we deal in sequence with the following subjects: (Section) 2, generation by wind; 3, nonlinear interactions in deep water; 4, white-capping dissipation; 5, nonlinear interactions in shallow water; 6, dissipation at the sea bottom; 7, wave propagation; 8, numerics. The two final sections, 9 and 10, summarize the present situation from a general point of view and try to look at the future developments

    Freely decaying weak turbulence for sea surface gravity waves

    Full text link
    We study numerically the generation of power laws in the framework of weak turbulence theory for surface gravity waves in deep water. Starting from a random wave field, we let the system evolve numerically according to the nonlinear Euler equations for gravity waves in infinitely deep water. In agreement with the theory of Zakharov and Filonenko, we find the formation of a power spectrum characterized by a power law of the form of k2.5|{\bf k}|^{-2.5}.Comment: 4 pages, 3 figure

    Asymmetry of wind waves studied in a laboratory tank

    No full text
    International audienceAsymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves
    corecore