38 research outputs found

    Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber

    Get PDF
    Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber is experimentally and numerically investigated. Guiding light in such fiber occurs via two mechanisms: photonic bandgap in the central silica core or total internal reflection in the germanium doped inclusions. By properly combining spectral filtering, dispersion tailoring and pump coupling into the fiber modes, we experimentally demonstrate efficient supercontinuum generation with controllable spectral bandwidth

    Axial spectral scans of polarization dependent third harmonic generation in a multimode photonic crystal fiber

    Get PDF
    We demonstrate a nondestructive axial scanning technique for the spectrally resolved analysis of femtosecond nonlinear-optical transformation in photonic crystal fibers. This technique is applied to map the generation of a polarization-switched third harmonic of femtosecond Cr:forsterite laser pulses in a multimode silica photonic crystal fiber. Obtained results confirmed the intermodal phase-matching to be responsible for the observed polarization dependent multipeak third-harmonic generation. The axial scans revealed, that it is necessary to distinguish between the low and high energy excitation regime of the fiber sample. The proposed technique allows to measure the spectra of nonlinear signals generated in a photonic crystal fiber as a function of the propagation distance without cutting the fiber

    Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    Get PDF
    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field

    Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers

    Get PDF
    The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution

    Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing

    No full text
    International audienceA chalcogenide optical fiber of special design is proposed to convert a short-wavelength IR radiation (around 2 μm) up to second transparency window of atmospheric air (around 4.5 μm) by degenerate four-wave mixing. The fiber supports a small core surrounded by three large air holes. The zero-dispersion wavelength is shifted down to 2 μm in this fiber by properly tailoring geometry of the fiber core. We demonstrate by solving the nonlinear Schrödinger equation that efficient wavelength-conversion can be obtained by pumping the fiber with a Tm:SiO2 pulsed fiber laser

    Soliton self-frequency shit in suspended core fibers

    No full text
    International audienc

    Nonlinear control of soliton pulse delay with asymmetric dual-core photonic crystal fibers

    No full text
    Dual-core photonic crystal fiber nonlinear couplers permit the achievement of distortion-free power- controlled delay of picosecond pulses. The stable control of pulse time delay is achievable by means of resonance soliton solutions
    corecore