5,500 research outputs found

    Comparison of continuous in situ CO2 observations at Jungfraujoch using two different measurement techniques

    Get PDF
    Since 2004, atmospheric carbon dioxide (CO2) is being measured at the High Altitude Research Station Jungfraujoch by the division of Climate and Environmental Physics at the University of Bern (KUP) using a nondispersive infrared gas analyzer (NDIR) in combination with a paramagnetic O2 analyzer. In January 2010, CO2 measurements based on cavity ring-down spectroscopy (CRDS) as part of the Swiss National Air Pollution Monitoring Network were added by the Swiss Federal Laboratories for Materials Science and Technology (Empa). To ensure a smooth transition – a prerequisite when merging two data sets, e.g., for trend determinations – the two measurement systems run in parallel for several years. Such a long-term intercomparison also allows the identification of potential offsets between the two data sets and the collection of information about the compatibility of the two systems on different time scales. A good agreement of the seasonality, short-term variations and, to a lesser extent mainly due to the short common period, trend calculations is observed. However, the comparison reveals some issues related to the stability of the calibration gases of the KUP system and their assigned CO2 mole fraction. It is possible to adapt an improved calibration strategy based on standard gas determinations, which leads to better agreement between the two data sets. By excluding periods with technical problems and bad calibration gas cylinders, the average hourly difference (CRDS – NDIR) of the two systems is −0.03 ppm ± 0.25 ppm. Although the difference of the two data sets is in line with the compatibility goal of ±0.1 ppm of the World Meteorological Organization (WMO), the standard deviation is still too high. A significant part of this uncertainty originates from the necessity to switch the KUP system frequently (every 12 min) for 6 min from ambient air to a working gas in order to correct short-term variations of the O2 measurement system. Allowing additional time for signal stabilization after switching the sample, an effective data coverage of only one-sixth for the KUP system is achieved while the Empa system has a nearly complete data coverage. Additionally, different internal volumes and flow rates may affect observed differences

    Data-adaptive longitudinal model selection in causal inference with collaborative targeted minimum loss-based estimation

    Get PDF
    R code disponible : https://www.mireilleschnitzer.com/collaborative-longitudinal-tmle.htmlCausal inference methods have been developed for longitudinal observationalstudy designs where confounding is thought to occur over time. In particular,one may estimate and contrast the population mean counterfactual outcomeunder specific exposure patterns. In such contexts, confounders of thelongitudinal treatment‐outcome association are generally identified usingdomain‐specific knowledge. However, this may leave an analyst with a largeset of potential confounders that may hinder estimation. Previous approaches todata‐adaptive model selection for this type of causal parameter were limited tothe single time‐point setting. We develop a longitudinal extension of acollaborative targeted minimum loss‐based estimation (C‐TMLE) algorithmthat can be applied to perform variable selection in the models for theprobability of treatment with the goal of improving the estimation of thepopulation mean counterfactual outcome under a fixed exposure pattern. Weinvestigate the properties of this method through a simulation study, comparingit to G‐Computation and inverse probability of treatment weighting. We thenapply the method in a real‐data example to evaluate the safety of trimester‐specific exposure to inhaled corticosteroids during pregnancy in women withmild asthma. The data for this study were obtained from the linkage ofelectronic health databases in the province of Quebec, Canada. The C‐TMLEcovariate selection approach allowed for a reduction of the set of potentialconfounders, which included baseline and longitudinal variables

    New X-ray Selected Pre-Main Sequence Members of the Serpens Molecular Cloud

    Get PDF
    The study of young stars no longer surrounded by disks can greatly add to our understanding of how protoplanetary disks evolve and planets form. We have used VLT/FLAMES optical spectroscopy to confirm the youth and membership of 19 new young diskless stars in the Serpens Molecular Cloud, identified at X-ray wavelengths. Spectral types, effective temperatures and stellar luminosities were determined using the optical spectra and optical/near-IR photometry. Stellar masses and ages were derived based on PMS evolutionary tracks. The results yield remarkable similarities for age and mass distribution between the diskless and disk-bearing stellar populations in Serpens. We discuss the important impli- cations these similarities may have on the standard picture of disk evolution.Comment: Accepted for publication at the Astronomical Journal. 21 pages, 7 figures and 5 table

    Comment on "Systematics of the Induced Magnetic Moments in 5d Layers and the Violation of the Third Hund's Rule"

    Full text link
    Comment on F. Wilhelm et al., Phys. Rev. Lett. 87, 207202 (2001)Comment: 1 pag

    Limits to the critical current in Bi2Sr2Ca2Cu3Ox tape conductors: The parallel path model

    Get PDF
    An extensive overview of a model that describes current flow and dissipation in high-quality Bi2Sr2Ca2Cu3Ox superconducting tapes is provided. The parallel path model is based on a superconducting current running in two distinct parallel paths. One of the current paths is formed by grains that are connected at angles below 4°. Dissipation in this strongly linked backbone occurs within the grains and is well described by classical flux-creep theory. The other current path, the weakly linked network, is formed by superconducting grains that are connected at intermediate angles (4°–8°) where dissipation occurs at the grain boundaries. However, grain boundary dissipation in this weakly linked current path does not occur through Josephson weak links, but just as in the strongly linked backbone, is well described by classical flux creep. The results of several experiments on Bi2Sr2Ca2Cu3Ox tapes and single-grained powders that strongly support the parallel path model are presented. The critical current density of Bi2Sr2Ca2Cu3Ox tapes can be scaled as a function of magnetic field angle over the temperature range from 15 K to 77 K. Expressions based on classical flux creep are introduced to describe the dependence of the critical current density of Bi2Sr2Ca2Cu3Ox tapes on the magnetic field and temperature
    • 

    corecore