1,107 research outputs found
Ribosomal protein synthesis is not regulated at the translational level in Saccharomyces cerevisiae: balanced accumulation of ribosomal proteins L16 and rp59 is mediated by turnover of excess protein.
We have investigated the mechanisms whereby equimolar quantities of ribosomal proteins accumulate and assemble into ribosomes of the yeast Saccharomyces cerevisiae. Extra copies of the cry1 or RPL16 genes encoding ribosomal proteins rp59 or L16 were introduced into yeast by transformation. Excess cry1 or RPL16 mRNA accumulated in polyribosomes in these cells and was translated at wild-type rates into rp59 or L16 proteins. These excess proteins were degraded until their levels reached those of other ribosomal proteins. Identical results were obtained when the transcription of RPL16A was rapidly induced using GAL1-RPL16A promoter fusions, including a construct in which the entire RPL16A 5\u27-noncoding region was replaced with the GAL1 leader sequence. Our results indicate that posttranscriptional expression of the cry1 and RPL16 genes is regulated by turnover of excess proteins rather than autogenous regulation of mRNA splicing or translation. The turnover of excess rp59 or L16 is not affected directly by mutations that inactivate vacuolar hydrolases
Output feedback robust H∞ control with D-stability and variance constraints: A parametrization approach
This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2005 Springer Ltd.In this paper, we study the problem of robust H∞ controller design for uncertain continuous-time systems with variance and D-stability constraints. The parameter uncertainties are allowed to be unstructured but norm-bounded. The aim of this problem is the design of an output feedback controller such that, for all admissible uncertainties, the closed-loop poles be placed within a specified disk, the H∞ norm bound constraint on the disturbance rejection attenuation be guaranteed, and the steady-state variance for each state of the closed-loop system be no more than the prescribed individual upper bound, simultaneously. A parametric design method is exploited to solve the problem addressed. Sufficient conditions for the existence of the desired controllers are derived by using the generalized inverse theory. The analytical expression of the set of desired controllers is also presented. It is shown that the obtained results can be readily extended to the dynamic output feedback case and the discrete-time case
Analysis of urinary oligosaccharides in lysosomal storage disorders by capillary high-performance anion-exchange chromatography–mass spectrometry
Many lysosomal storage diseases are characterized by an increased urinary excretion of glycoconjugates and oligosaccharides that are characteristic for the underlying enzymatic defect. Here, we have used capillary high-performance anion-exchange chromatography (HPAEC) hyphenated to mass spectrometry to analyze free oligosaccharides from urine samples of patients suffering from the lysosomal storage disorders fucosidosis, α-mannosidosis, GM1-gangliosidosis, GM2-gangliosidosis, and sialidosis. Glycan fingerprints were registered, and the patterns of accumulated oligosaccharides were found to reflect the specific blockages of the catabolic pathway. Our analytical approach allowed structural analysis of the excreted oligosaccharides and revealed several previously unpublished oligosaccharides. In conclusion, using online coupling of HPAEC with mass spectrometric detection, our study provides characteristic urinary oligosaccharide fingerprints with diagnostic potential for lysosomal storage disorders
Deep Wide-Field Spectrophotometry of the Open Cluster M67
We present nine color CCD intermediate-band spectrophotometry of a two square
degree field centered on the old open cluster M67, from 3890 to nearly
1. These observations are taken as a part of the BATC
(Beijing-Arizona-Taipei-Connecticut) Color Survey of the Sky, for both
scientific and calibration reasons. With these data we show that the BATC
survey can reach its goal of obtaining spectrophotometry to a zero point
accuracy of 0.01 mag, and down to V = 21 with 0.3 mag random error. We fit the
color-magnitude diagrams (CMDs) with Worthey's theoretical models. The net
result is the excellent fit of the 4.0 Gyr, [Fe/H] = model to our data,
including a good fit to the main sequence (MS) turn-off. Our data are
consistent with a toy model with 50\% of the stars in M67 being binaries and a
random distribution of binary mass-ratios, although other models with different
mass-ratio distributions cannot be ruled out. The spatial distribution and mass
function (MF) of stars in M67 show marked effects of dynamical evolution and
evaporation of stars from the cluster. Blue stragglers and binary stars are the
most condensed within the cluster, with degree of condensation depending on
mass.We find M67 to have an elongated shape, oriented at an angle of
relative to the galactic plane. Within its tidal radius, the
observed MF of M67 between 1.2 and has a
Salpeter slope . For stars of mass below 0.8 , . It is plausible that the leveling-off of the MF at
lower masses is a result of evaporation of lower mass stars in this mass range
at a rate of one every years. If so, it is plausible that the IMF
of M67 has the canonical field value of .Comment: 74 pages, including 19 ps figures. Accepted for publication in AJ,
Aug, 199
Bahadur Representation for the Nonparametric M-Estimator Under alpha-mixing Dependence
Under the condition that the observations, which come from a high-dimensional population (X,Y), are strongly stationary and strongly-mixing, through using the local linear method, we investigate, in this paper, the strong Bahadur representation of the nonparametric M-estimator for the unknown function m(x)=arg minaIE(r(a,Y)|X=x), where the loss function r(a,y) is measurable. Furthermore, some related simulations are illustrated by using the cross validation method for both bivariate linear and bivariate nonlinear time series contaminated by heavy-tailed errors. The M-estimator is applied to a series of S&P 500 index futures andspot prices to compare its performance in practice with the usual squared-loss regression estimator
Two-frequency shell model for hypernuclei and meson-exchange hyperon-nucleon potentials
A two-frequency shell model is proposed for investigating the structure of hypernuclei starting with a hyperon-nucleon potential in free space. In a calculation using the folded-diagram method for Λ¹⁶O, the Λ single particle energy is found to have a saturation minimum at an oscillator frequency ħωΛ≈10MeV, for the Λ orbit, which is considerably smaller than ħωN=14MeV for the nucleon orbit. The spin-dependence parameters derived from the Nijmegen NSC89 and NSC97f potentials are similar, but both are rather different from those obtained with the Jülich-B potential. The ΛNN three-body interactions induced by ΛN-ΣN transitions are important for the spin parameters, but relatively unimportant for the low-lying states of Λ¹⁶O.Yiharn Tzeng, S. Y. Tsay Tzeng, T. T. S. Kuo, T.-S.H. Lee, and V. G. D. Stok
Dichotomy in the NRT Gene Families of Dicots and Grass Species
A large proportion of the nitrate (NO3−) acquired by plants from soil is actively transported via members of the NRT families of NO3− transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2) family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH) approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium). We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO3− transporters and NO3− transport in grass crop species
Forecasting robust value-at-risk estimates: Evidence from UK banks
In this paper, we present a novel approach for forecasting Value-at-Risk (VaR) by combining a Bayesian GARCH(1,1) model with Student's-t distribution for the underlying volatility models, vine copula functions to model dependence, and peaks-over-threshold (POT) method of extreme value theory (EVT) to model the tail behaviour of asset returns. We further propose a new approach for threshold selection in extreme value analysis, which we call a hybrid method. The empirical results and back-testing analysis show that the model captures VaR quite well through periods of calmness and crisis; therefore, it is suitable for use as a measure of risk. Our results also suggest that with a correct implementation of the VaR model, Basel III is not needed
- …