27 research outputs found

    Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean

    Get PDF
    Background: Photosynthetic picoeukaryotes (PPE) with a cell size less than 3 µm play a critical role in oceanic primary production. In recent years, the composition of marine picoeukaryote communities has been intensively investigated by molecular approaches, but their photosynthetic fraction remains poorly characterized. This is largely because the classical approach that relies on constructing 18S rRNA gene clone libraries from filtered seawater samples using universal eukaryotic primers is heavily biased toward heterotrophs, especially alveolates and stramenopiles, despite the fact that autotrophic cells in general outnumber heterotrophic ones in the euphotic zone. Methodology/Principal Findings: In order to better assess the composition of the eukaryotic picophytoplankton in the South East Pacific Ocean, encompassing the most oligotrophic oceanic regions on earth, we used a novel approach based on flow cytometry sorting followed by construction of 18S rRNA gene clone libraries. This strategy dramatically increased the recovery of sequences from putative autotrophic groups. The composition of the PPE community appeared highly variable both vertically down the water column and horizontally across the South East Pacific Ocean. In the central gyre, uncultivated lineages dominated: a recently discovered clade of Prasinophyceae (IX), clades of marine Chrysophyceae and Haptophyta, the latter division containing a potentially new class besides Prymnesiophyceae and Pavlophyceae. In contrast, on the edge of the gyre and in the coastal Chilean upwelling, groups with cultivated representatives (Prasinophyceae clade VII and Mamiellales) dominated. Conclusions/Significance: Our data demonstrate that a very large fraction of the eukaryotic picophytoplankton still escapes cultivation. The use of flow cytometry sorting should prove very useful to better characterize specific plankton populations by molecular approaches such as gene cloning or metagenomics, and also to obtain into culture strains representative of these novel groups

    A global perspective on marine photosynthetic picoeukaryote community structure

    Get PDF
    A central goal in ecology is to understand the factors affecting the temporal dynamics and spatial distribution of microorganisms and the underlying processes causing differences in community structure and composition. However, little is known in this respect for photosynthetic picoeukaryotes (PPEs), algae that are now recognised as major players in marine CO2 fixation. Here, we analysed dot blot hybridisation and cloning–sequencing data, using the plastid-encoded 16S rRNA gene, from seven research cruises that encompassed all four ocean biomes. We provide insights into global abundance, α- and β-diversity distribution and the environmental factors shaping PPE community structure and composition. At the class level, the most commonly encountered PPEs were Prymnesiophyceae and Chrysophyceae. These taxa displayed complementary distribution patterns, with peak abundances of Prymnesiophyceae and Chrysophyceae in waters of high (25:1) or low (12:1) nitrogen:phosphorus (N:P) ratio, respectively. Significant differences in phylogenetic composition of PPEs were demonstrated for higher taxonomic levels between ocean basins, using Unifrac analyses of clone library sequence data. Differences in composition were generally greater between basins (interbasins) than within a basin (intrabasin). These differences were primarily linked to taxonomic variation in the composition of Prymnesiophyceae and Prasinophyceae whereas Chrysophyceae were phylogenetically similar in all libraries. These data provide better knowledge of PPE community structure across the world ocean and are crucial in assessing their evolution and contribution to CO2 fixation, especially in the context of global climate change

    Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean

    No full text
    Global estimates indicate the oceans are responsible for approximately half of the carbon dioxide fixed on Earth. Organisms <= 5 mu m in size dominate open ocean phytoplankton communities in terms of abundance and CO(2) fixation, with the cyanobacterial genera Prochlorococcus and Synechococcus numerically the most abundant and more extensively studied compared with small eukaryotes. However, the contribution of specific taxonomic groups to marine CO(2) fixation is still poorly known. In this study, we show that among the phytoplankton, small eukaryotes contribute significantly to CO(2) fixation (44%) because of their larger cell volume and thereby higher cell-specific CO(2) fixation rates. Within the eukaryotes, two groups, herein called Euk-A and Euk-B, were distinguished based on their flow cytometric signature. Euk-A, the most abundant group, contained cells 1.8 +/- 0.1 mu m in size while Euk-B was the least abundant but cells were larger (2.8 +/- 0.2 mu m). The Euk-B group comprising prymnesiophytes (73 +/- 13%) belonging largely to lineages with no close cultured counterparts accounted for up to 38% of the total primary production in the subtropical and tropical northeast Atlantic Ocean, suggesting a key role of this group in oceanic CO(2) fixation. The ISME Journal (2010) 4, 1180-1192; doi: 10.1038/ismej.2010.36; published online 15 April 201

    Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study

    No full text
    Deep-sequencing technologies are becoming nearly routine to describe microbial community composition in environmental samples. The 18S ribosomal DNA (rDNA) pyrosequencing has revealed a vast diversity of infrequent sequences, leading to the proposition of the existence of an extremely diverse microbial `rare biosphere'. Although rare microbes no doubt exist, critical views suggest that many rare sequences may actually be artifacts. However, information about how diversity revealed by molecular methods relates to that revealed by classical morphology approaches is practically nonexistent. To address this issue, we used different approaches to assess the diversity of tintinnid ciliates, a species-rich group in which species can be easily distinguished morphologically. We studied two Mediterranean marine samples with different patterns of tintinnid diversity. We estimated tintinnid diversity in these samples employing morphological observations and both classical cloning and sequencing and pyrosequencing of two different markers, the 18S rDNA and the internal transcribed spacer (ITS) regions, applying a variety of computational approaches currently used to analyze pyrosequence reads. We found that both molecular approaches were efficient in detecting the tintinnid species observed by microscopy and revealed similar phylogenetic structures of the tintinnid community at the species level. However, depending on the method used to analyze the pyrosequencing results, we observed discrepancies with the morphology-based assessments up to several orders of magnitude. In several cases, the inferred number of operational taxonomic units (OTUs) largely exceeded the total number of tintinnid cells in the samples. Such inflation of the OTU numbers corresponded to `rare biosphere' taxa, composed largely of artifacts. Our results suggest that a careful and rigorous analysis of pyrosequencing data sets, including data denoising and sequence clustering with well-adjusted parameters, is necessary to accurately describe microbial biodiversity using this molecular approach. The ISME Journal (2013) 7, 244-255; doi: 10.1038/ismej.2012.106; published online 4 October 201

    Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans

    No full text
    14 pages, 6 figures, 2 tables, supplementary Information http://www.nature.com/ismej/journal/v10/n4/suppinfo/ismej2015170s1.htmlIn this work, we study the diversity of bathypelagic microbial eukaryotes (0.8–20 μm) in the global ocean. Seawater samples from 3000 to 4000m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regionsThis project was supported by the Spanish Ministry of Economy and Competitiveness through project Consolider-Ingenio Malaspina-2010 (CSD2008–00077) to CMD and FLAME (CGL2010-16304) to RM. RL was supported by a Juan de la Cierva Fellowship (JCI-2010-06594, Spanish Ministry of Economy and Competitiveness, Spain). Sequencing at the JGI was supported by US Department of Energy (DOE) JGI 2011 Microbes Program grant CSP 602 grant to SGA. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. Additional funding was provided by the Spanish Ministry of Economy and Competitivity grant MALASPINOMICS (CTM2011-15461-E). The authors were also supported by the Generalitat de Catalunya Research Group grants 2014SGR/1179Peer Reviewe
    corecore