913 research outputs found
Recommended from our members
Midbrain Dopamine Neurons Signal Belief in Choice Accuracy during a Perceptual Decision
Central to the organization of behavior is the ability to predict the values of outcomes to guide choices. The accuracy of such predictions is honed by a teaching signal that indicates how incorrect a prediction was (“reward prediction error,” RPE). In several reinforcement learning contexts, such as Pavlovian conditioning and decisions guided by reward history, this RPE signal is provided by midbrain dopamine neurons. In many situations, however, the stimuli predictive of outcomes are perceptually ambiguous. Perceptual uncertainty is known to influence choices, but it has been unclear whether or how dopamine neurons factor it into their teaching signal. To cope with uncertainty, we extended a reinforcement learning model with a belief state about the perceptually ambiguous stimulus; this model generates an estimate of the probability of choice correctness, termed decision confidence. We show that dopamine responses in monkeys performing a perceptually ambiguous decision task comply with the model’s predictions. Consequently, dopamine responses did not simply reflect a stimulus’ average expected reward value but were predictive of the trial-to-trial fluctuations in perceptual accuracy. These confidence-dependent dopamine responses emerged prior to monkeys’ choice initiation, raising the possibility that dopamine impacts impending decisions, in addition to encoding a post-decision teaching signal. Finally, by manipulating reward size, we found that dopamine neurons reflect both the upcoming reward size and the confidence in achieving it. Together, our results show that dopamine responses convey teaching signals that are also appropriate for perceptual decisions
The CWKB particle production and classical condensate in de Sitter spacetime
The complex time WKB approximation is an effective tool in studying particle
production in curved spacetime. We use it in this work to understand the
formation of classical condensate in expanding de Sitter spacetime. The CWKB
leads to the emergence of thermal spectrum that depends crucially on horizons
(as in de Sitter spacetime) or observer dependent horizons (as in Rindler
spacetime). A connection is sought between the horizon and the formation of
classical condensate. We concentrate on de Sitter spacetime and study the
cosmological perturbation of mode with various values of . We find
that for a minimally coupled free scalar field for , the one-mode
occupation number grows more than unity soon after the physical wavelength of
the mode crosses the Hubble radius and soon after diverges as , where . The results substantiates the previous works in this
direction. We also find the correct oscillation and behaviour of at
small from a single expression using CWKB approximation for various values
of . We also discuss decoherence in relation to the formation of
classical condensate. We also find that the squeezed state formalism and CWKB
method give identical results.Comment: 19 pages, revtex, 5 figure
Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions
We investigate the average bipartite entanglement, over all possible
divisions of a multipartite system, as a useful measure of multipartite
entanglement. We expose a connection between such measures and
quantum-error-correcting codes by deriving a formula relating the weight
distribution of the code to the average entanglement of encoded states.
Multipartite entangling power of quantum evolutions is also investigated.Comment: 13 pages, 1 figur
A new regime of anomalous penetration of relativistically strong laser radiation into an overdense plasma
It is shown that penetration of relativistically intense laser light into an
overdense plasma, accessible by self-induced transparency, occurs over a finite
length only. The penetration length depends crucially on the overdense plasma
parameter and increases with increasing incident intensity after exceeding the
threshold for self-induced transparency. Exact analytical solutions describing
the plasma-field distributions are presented.Comment: 6 pages, 2 figures in 2 separate eps files; submitted to JETP Letter
- …