14,116 research outputs found
The role of rotation on Petersen Diagrams. The period ratios
The present work explores the theoretical effects of rotation in calculating
the period ratios of double-mode radial pulsating stars with special emphasis
on high-amplitude delta Scuti stars (HADS). Diagrams showing these period
ratios vs. periods of the fundamental radial mode have been employed as a good
tracer of non-solar metallicities and are known as Petersen diagrams (PD).In
this paper we consider the effect of moderate rotation on both evolutionary
models and oscillation frequencies and we show that such effects cannot be
completely neglected as it has been done until now. In particular it is found
that even for low-to-moderate rotational velocities (15-50 km/s), differences
in period ratios of some hundredths can be found. The main consequence is
therefore the confusion scenario generated when trying to fit the metallicity
of a given star using this diagram without a previous knowledge of its
rotational velocity.Comment: A&A in pres
Radiative capture reaction for Ne formation within a full three-body model
Background: The breakout from the hot Carbon-Nitrogen-Oxigen (CNO) cycles can
trigger the rp-process in type I x-ray bursts. In this environment, a
competition between and the
two-proton capture reaction is
expected.
Purpose: Determine the three-body radiative capture reaction rate for
formation including sequential and direct, resonant and
non-resonant contributions on an equal footing.
Method: Two different discretization methods have been applied to generate
Ne states in a full three-body model: the analytical transformed
harmonic oscillator method and the hyperspherical adiabatic expansion method.
The binary --O interaction has been adjusted to reproduce the known
spectrum of the unbound F nucleus. The dominant contributions to
the reaction rate have been
calculated from the inverse photodissociation process.
Results: Three-body calculations provide a reliable description of Ne
states. The agreement with the available experimental data on Ne is
discussed. It is shown that the
reaction rates computed within the two methods agree in a broad range of
temperatures. The present calculations are compared with a previous theoretical
estimation of the reaction rate.
Conclusions: It is found that the full three-body model provides a reaction
rate several orders of magnitude larger than the only previous estimation. The
implications for the rp-process in type I x-ray bursts should be investigated.Comment: 10 pages, 10 figures. Corrected versio
Probing the Efimov discrete scaling in atom-molecule collision
The discrete Efimov scaling behavior, well-known in the low-energy spectrum
of three-body bound systems for large scattering lengths (unitary limit), is
identified in the energy dependence of atom-molecule elastic cross-section in
mass imbalanced systems. That happens in the collision of a heavy atom with
mass with a weakly-bound dimer formed by the heavy atom and a lighter one
with mass . Approaching the heavy-light unitary limit the wave
elastic cross-section will present a sequence of zeros/minima at
collision energies following closely the Efimov geometrical law. Our results
open a new perspective to detect the discrete scaling behavior from low-energy
scattering data, which is timely in view of the ongoing experiments with
ultra-cold binary mixtures having strong mass asymmetries, such as Lithium and
Caesium or Lithium and Ytterbium
Three-body structure of low-lying 18Ne states
We investigate to what extent 18Ne can be descibed as a three-body system
made of an inert 16O-core and two protons. We compare to experimental data and
occasionally to shell model results. We obtain three-body wave functions with
the hyperspherical adiabatic expansion method. We study the spectrum of 18Ne,
the structure of the different states and the predominant transition strengths.
Two 0+, two 2+, and one 4+ bound states are found where they are all known
experimentally. Also one 3+ close to threshold is found and several negative
parity states, 1-, 3-, 0-, 2-, most of them bound with respect to the 16O
excited 3- state. The structures are extracted as partial wave components, as
spatial sizes of matter and charge, and as probability distributions.
Electromagnetic decay rates are calculated for these states. The dominating
decay mode for the bound states is E2 and occasionally also M1.Comment: 17 pages, 5 figures (version to appear in EPJA
Spin-dependent effective interactions for halo nuclei
We discuss the spin-dependence of the effective two-body interactions
appropriate for three-body computations. The only reasonable choice seems to be
the fine and hyperfine interactions known for atomic electrons interacting with
the nucleus. One exception is the nucleon-nucleon interaction imposing a
different type of symmetry. We use the two-neutron halo nucleus 11Li as
illustration. We demonstrate that models with the wrong spin-dependence are
basically without predictive power. The Pauli forbidden core and valence states
must be consistently treated.Comment: TeX file, 6 pages, 3 postscript figure
- …