59 research outputs found

    Induction of interferon-stimulated genes on the IL-4 response axis by Epstein-Barr virus infected human b cells; relevance to cellular transformation.

    Get PDF
    Epstein-Barr virus (EBV) is an oncogenic virus that is associated with the pathogenesis of several human lymphoid malignancies, including Hodgkin's lymphoma. Infection of normal resting B cells with EBV results in activation to lymphoblasts that are phenotypically similar to those generated by physiological stimulation with CD40L plus IL-4. One important difference is that infection leads to the establishment of permanently growing lymphoblastoid cell lines, whereas CD40L/IL-4 blasts have finite proliferation lifespans. To identify early events which might later determine why EBV infected blasts go on to establish transformed cell lines, we performed global transcriptome analyses on resting B cells and on EBV and CD40L/IL-4 blasts after 7 days culture. As anticipated there was considerable overlap in the transcriptomes of the two types of lymphoblasts when compared to the original resting B cells, reflecting common changes associated with lymphocyte activation and proliferation. Of interest to us was a subset of 255 genes that were differentially expressed between EBV and CD40L/IL-4 blasts. Genes which were more highly expressed in EBV blasts were substantially and significantly enriched for a set of interferon-stimulated genes which on further in silico analyses were found to be repressed by IL-4 in other cell contexts and to be up-regulated in micro-dissected malignant cells from Hodgkin's lymphoma biopsies when compared to their normal germinal center cell counterparts. We hypothesized that EBV and IL-4 were targeting and discordantly regulating a common set of genes. This was supported experimentally in our B cell model where IL-4 stimulation partially reversed transcriptional changes which follow EBV infection and it impaired the efficiency of EBV-induced B cell transformation. Taken together, these data suggest that the discordant regulation of interferon and IL-4 pathway genes by EBV that occurs early following infection of B cells has relevance to the development or maintenance of an EBV-associated malignancy

    Movement consistency during repetitive tool use action

    Get PDF
    The consistency and repeatability of movement patterns has been of long-standing interest in locomotor biomechanics, but less well explored in other domains. Tool use is one of such a domain; while the complex dynamics of the human-tool-environment system have been approached from various angles, to date it remains unknown how the rhythmicity of repetitive tool-using action emerges. To examine whether the spontaneously adopted movement frequency is a variable susceptible to individual execution approaches or emerges as constant behaviour, we recorded sawing motion across a range of 14 experimental conditions using various manipulations. This was compared to free and pantomimed arm movements. We found that a mean (SD) sawing frequency of 2.0 (0.4) Hz was employed across experimental conditions. Most experimental conditions did not significantly affect the sawing frequency, signifying the robustness of this spontaneously emerging movement. Free horizontal arm translation and miming of sawing was performed at half the movement frequency with more than double the excursion distance, showing that not all arm movements spontaneously emerge at the observed sawing parameters. Observed movement frequencies across all conditions could be closely predicted from movement time reference data for generic arm movements found in the Methods Time Measurement literature, highlighting a generic biomechanical relationship between the time taken for a given distance travelled underlying the observed behaviour. We conclude that our findings lend support to the hypothesis that repetitive movements during tool use are executed according to generic and predictable musculoskeletal mechanics and constraints, albeit in the context of the general task (sawing) and environmental constraints such as friction, rather than being subject to task-specific control or individual cognitive schemata
    corecore