16,174 research outputs found

    Heterostructure solar cells

    Get PDF
    The performance of gallium arsenide solar cells grown on Ge substrates is discussed. In some cases the substrate was thinned to reduce overall cell weight with good ruggedness. The conversion efficiency of 2 by 2 cm cells under AMO reached 17.1 percent with a cell thickness of 6 mils. The work described forms the basis for future cascade cell structures, where similar interconnecting problems between the top cell and the bottom cell must be solved. Applications of the GaAs/Ge solar cell in space and the expected payoffs are discussed

    A parallel VLSI architecture for a digital filter of arbitrary length using Fermat number transforms

    Get PDF
    A parallel architecture for computation of the linear convolution of two sequences of arbitrary lengths using the Fermat number transform (FNT) is described. In particular a pipeline structure is designed to compute a 128-point FNT. In this FNT, only additions and bit rotations are required. A standard barrel shifter circuit is modified so that it performs the required bit rotation operation. The overlap-save method is generalized for the FNT to compute a linear convolution of arbitrary length. A parallel architecture is developed to realize this type of overlap-save method using one FNT and several inverse FNTs of 128 points. The generalized overlap save method alleviates the usual dynamic range limitation in FNTs of long transform lengths. Its architecture is regular, simple, and expandable, and therefore naturally suitable for VLSI implementation

    Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi_2Se_3 with scanning tunneling spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Bi_2Se_3 epitaxial films on Si (111) substrates reveal highly localized unitary impurity resonances associated with non-magnetic quantum impurities. The strength of the resonances depends on the energy difference between the Fermi level (E_F) and the Dirac point (E_D) and diverges as E_F approaches E_D. The Dirac-cone surface state of the host recovers within ~ 2Å spatial distance from impurities, suggesting robust topological protection of the surface state of topological insulators against high-density impurities that preserve time reversal symmetry

    Improved silicon nitride for advanced heat engines

    Get PDF
    The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters

    Effect of Strain Relaxation on Magnetotransport properties of epitaxial La_0.7Ca_0.3MnO_3 films

    Get PDF
    In this paper, we have studied the effect of strain relaxation on magneto-transport properties of La_0.7Ca_0.3MnO_3 epitaxial films (200 nm thick), which were deposited by pulsed laser deposition technique under identical conditions. All the films are epitaxial and have cubic unit cell. The amount of strain relaxation has been varied by taking three different single crystal substrates of SrTiO_3, LaAlO_3 and MgO. It has been found that for thicker films the strain gets relaxed and produces variable amount of disorder depending on the strength of strain relaxation. The magnitude of lattice relaxation has been found to be 0.384, 3.057 and 6.411 percent for film deposited on SrTiO_3, LaAlO_3 and MgO respectively. The films on LaAlO_3 and SrTiO_3 show higher T_{IM} of 243 K and 217 K respectively as compared to T_{IM} of 191 K for the film on MgO. Similarly T_C of the films on SrTiO_3 and LaAlO_3 is sharper and has value of 245 K and 220 K respectively whereas the TC of the film on MgO is 175 K. Higher degree of relaxation creates more defects and hence TIM (T_C) of the film on MgO is significantly lower than of SrTiO_3 and LaAlO_3. We have adopted a different approach to correlate the effect of strain relaxation on magneto-transport properties of LCMO films by evaluating the resistivity variation through Mott's VRH model. The variable presence of disorder in these thick films due to lattice relaxation which have been analyzed through Mott's VRH model provides a strong additional evidence that the strength of lattice relaxation produces disorder dominantly by increase in density of defects such as stacking faults, dislocations, etc. which affect the magneto-transport properties of thick epitaxial La_0.7Ca_0.3MnO_3 films

    Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Ba(Fe1xCox)2As2Ba(Fe_{1-x}Co_x)_2As_2 (x = 0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap superconductivity. These gaps decrease with increasing temperature and vanish above the superconducting transition TcT_c. The two-gap nature and the slightly doping- and energy-dependent quasiparticle scattering interferences near the wave-vectors (±π,0)(\pm \pi, 0) and (0,±π)(0, \pm \pi) are consistent with sign-changing ss-wave superconductivity. The excess zero-bias conductance and the large gap-to-TcT_c ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review Letters. Contact author: Nai-Chang Yeh ([email protected]

    M\"{o}ssbauer study of the '11' iron-based superconductors parent compound Fe(1+x)Te

    Full text link
    57Fe Moessbauer spectroscopy was applied to investigate the superconductor parent compound Fe(1+x)Te for x=0.06, 0.10, 0.14, 0.18 within the temperature range 4.2 K - 300 K. A spin density wave (SDW) within the iron atoms occupying regular tetrahedral sites was observed with the square root of the mean square amplitude at 4.2 K varying between 9.7 T and 15.7 T with increasing x. Three additional magnetic spectral components appeared due to the interstitial iron distributed over available sites between the Fe-Te layers. The excess iron showed hyperfine fields at approximately 16 T, 21 T and 49 T for three respective components at 4.2 K. The component with a large field of 49 T indicated the presence of isolated iron atoms with large localized magnetic moment in interstitial positions. Magnetic ordering of the interstitial iron disappeared in accordance with the fallout of the SDW with the increasing temperature

    Dimensionality of superconductivity in the infinite-layer high-temperature cuprate Sr0.9M0.1CuO2 (M = La, Gd)

    Get PDF
    The high magnetic field phase diagram of the electron-doped infinite layer high-temperature superconducting (high-T_c) compound Sr_{0.9}La_{0.1}CuO_2 was probed by means of penetration depth and magnetization measurements in pulsed fields to 60 T. An anisotropy ratio of 8 was detected for the upper critical fields with H parallel (H_{c2}^{ab}) and perpendicular (H_{c2}^c) to the CuO_2 planes, with H_{c2}^{ab} extrapolating to near the Pauli paramagnetic limit of 160 T. The longer superconducting coherence length than the lattice constant along the c-axis indicates that the orbital degrees of freedom of the pairing wavefunction are three dimensional. By contrast, low-field magnetization and specific heat measurements of Sr_{0.9}Gd_{0.1}CuO_2 indicate a coexistence of bulk s-wave superconductivity with large moment Gd paramagnetism close to the CuO_2 planes, suggesting a strong confinement of the spin degrees of freedom of the Cooper pair to the CuO_2 planes. The region between H_{c2}^{ab} and the irreversibility line in the magnetization, H_{irr}^{ab}, is anomalously large for an electron-doped high-T_c cuprate, suggesting the existence of additional quantum fluctuations perhaps due to a competing spin-density wave order.Comment: 4 pages, 4 figures, submitted to Phys. Rev. B, Rapid Communications (2004). Corresponding author: Nai-Chang Yeh (E-mail: [email protected]

    Quasiparticle spectroscopy and high-field phase diagrams of cuprate superconductors -- An investigation of competing orders and quantum criticality

    Get PDF
    We present scanning tunneling spectroscopic and high-field thermodynamic studies of hole- and electron-doped (p- and n-type) cuprate superconductors. Our experimental results are consistent with the notion that the ground state of cuprates is in proximity to a quantum critical point (QCP) that separates a pure superconducting (SC) phase from a phase comprised of coexisting SC and a competing order, and the competing order is likely a spin-density wave (SDW). The effect of applied magnetic field, tunneling current, and disorder on the revelation of competing orders and on the low-energy excitations of the cuprates is discussed.Comment: 10 pages, 5 figures. Accepted for publication in the International Journal of Modern Physics B. (Correspondence author: Nai-Chang Yeh, e-mail: [email protected]
    corecore