37,550 research outputs found

    Comparison of a reverse-transverse cross pin technique with a same side cross pin type II external skeletal fixator in 89 dogs

    Get PDF
    The objective of this study was to determine whether a novel reverse-transverse cross pin insertion technique could increase the stability of type II external skeletal fixators (ESF) in dogs compared with an alternate, same side cross pin ESF. Reverse-transverse cross pin technique and type II ESFs same side cross pin technique were applied and compared among subjects. Two of 42 ESFs (4.8%) applied with the reverse-transverse cross pin technique and 39 of 47 ESFs (83%) applied with the same side cross pin technique were subjectively unstable at the time of fixator removal (P < 0.001). The same side cross pin ESFs had significantly more pin tract new bone formation than the reverse-transverse ESFs (P = 0.038). In summary, this approach may provide a method of treating a variety of musculoskeletal conditions and soft tissue cases, which reverse-transverse cross pin ESFs are tolerated in dogs for a variety of conditions

    Semimetalic graphene in a modulated electric potential

    Full text link
    The π\pi-electronic structure of graphene in the presence of a modulated electric potential is investigated by the tight-binding model. The low-energy electronic properties are strongly affected by the period and field strength. Such a field could modify the energy dispersions, destroy state degeneracy, and induce band-edge states. It should be noted that a modulated electric potential could make semiconducting graphene semimetallic, and that the onset period of such a transition relies on the field strength. There exist infinite Fermi-momentum states in sharply contrast with two crossing points (Dirac points) for graphene without external fields. The finite density of states (DOS) at the Fermi level means that there are free carriers, and, at the same time, the low DOS spectrum exhibits many prominent peaks, mainly owing to the band-edge states.Comment: 12pages, 5 figure

    Computation of the tip vortex flowfield for advanced aircraft propellers

    Get PDF
    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178)

    User's manual for PEPSIG NASA tip vortex version

    Get PDF
    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. This document is the user's manual. The analysis and a series of test cases are presented in NASA-CR-182179

    Self-consistent determination of the perpendicular strain profile of implanted Si by analysis of x-ray rocking curves

    Get PDF
    Results of a determination of strain perpendicular to the surface and of the damage in (100) Si single crystals irradiated by 250-keV Ar+ ions at 77 K are presented. Double-crystal x-ray diffraction and dynamical x-ray diffraction theory are used. Trial strain and damage distributions were guided by transmission electron microscope observations and Monte Carlo simulation of ion energy deposition. The perpendicular strain and damage profiles, determined after sequentially removing thin layers of Ar+-implanted Si, were shown to be self-consistent, proving the uniqueness of the deconvolution. Agreement between calculated and experimental rocking curves is obtained with strain and damage distributions which closely follow the shape of the trim simulations from the maximum damage to the end of the ion range but fall off more rapidly than the simulation curve near the surface. Comparison of the trim simulation and the strain profile of Ar+-implanted Si reveals the importance of annealing during and after implantation and the role of complex defects in the final residual strain distribution

    Numerical analysis of the Iosipescu specimen for composite materials

    Get PDF
    A finite element analysis of the Iosipescu shear tests for unidirectional and cross-ply composites is presented. It is shown that an iterative analysis procedure must be used to model the fixture-specimen kinematics. The correction factors which are needed to compensate for the nonuniformity of stress distribution in calculating shear modulus are shown to be dependent on the material orthotropic ratio and the finite element loading models. Test section strain distributions representative of typical graphite-epoxy specimens are also presented

    Research on the comprehensive treatments of Chinese medicine: questionnaires of the patients’ profile of a teaching centre of Middlesex University

    Get PDF
    Complementary medicine is widely used in the UK, with more than 50% of those surveyed had used acupuncture, acupuncture related therapies and herbal medicine (Ernst and White 2000). Although data have been reported of the general population using complementary and alternative medicine, there are few that are specifically addressing the questions why patients use Chinese medicine and acupuncture in the first place and why they decide to continue or discontinue with their treatments. This survey was carried out at the Asante Academy of Chinese Medicine, an affiliated teaching and research centre for Middlesex University. The main purpose of the survey is to establish a pattern of patients attending this particular centre of Chinese medicine for future reference of a typical teaching and research centres outside China, and to find out the reasons why patients use Chinese herbal medicine and acupuncture. Three groups of patients were randomly selected and they are classified as new patients, continued patients and discontinued patients. They had a diversity of problems from muscular-skeletal disorders, gynaecological problems, stress and emotional-related symptoms to skin disorders and digestive system disorders. Data collected from the survey are analysed and effects of the TCM treatment on these disorders were evaluated

    TagF-mediated repression of bacterial type VI secretion systems involves a direct interaction with the cytoplasmic protein Fha

    Get PDF
    The bacterial type VI secretion system (T6SS) delivers effectors into eukaryotic host cells or toxins into bacterial competitor for survival and fitness. The T6SS is positively regulated by the threonine phosphorylation pathway (TPP) and negatively by the T6SS-accessory protein TagF. Here, we studied the mechanisms underlying TagF-mediated T6SS repression in two distinct bacterial pathogens, Agrobacterium tumefaciens and Pseudomonas aeruginosa. We found that in A. tumefaciens, T6SS toxin secretion and T6SS-dependent antibacterial activity are suppressed by a two-domain chimeric protein consisting of TagF and PppA, a putative phosphatase. Remarkably, this TagF domain is sufficient to post-translationally repress the T6SS, and this inhibition is independent of TPP. This repression requires interaction with a cytoplasmic protein, Fha, critical for activating T6SS assembly. In P. aeruginosa, PppA and TagF are two distinct proteins that repress T6SS in a TPP-dependent and -independent pathways, respectively. P. aeruginosa TagF interacts with Fha1, suggesting that formation of this complex represents a conserved TagF-mediated regulatory mechanism. Using TagF variants with substitutions of conserved amino acid residues at predicted protein-protein interaction interfaces, we uncovered evidence that the TagF-Fha interaction is critical for TagF-mediated T6SS repression in both bacteria. TagF inhibits T6SS without affecting T6SS protein abundance in A. tumefaciens, but TagF overexpression reduces the protein levels of all analyzed T6SS components in P. aeruginosa. Our results indicate that TagF interacts with Fha, which in turn could impact different stages of T6SS assembly in different bacteria, possibly reflecting an evolutionary divergence in T6SS control
    • …
    corecore