50,111 research outputs found

    Dilaton as a Dark Matter Candidate and its Detection

    Full text link
    Assuming that the dilaton is the dark matter of the universe, we propose an experiment to detect the relic dilaton using the electromagnetic resonant cavity, based on the dilaton-photon conversion in strong electromagnetic background. We calculate the density of the relic dilaton, and estimate the dilaton mass for which the dilaton becomes the dark matter of the universe. With this we calculate the dilaton detection power in the resonant cavity, and compare it with the axion detection power in similar resonant cavity experiment.Comment: 23 pages, 2 figure

    Gravitationally Coupled Electroweak Monopole

    Get PDF
    We present a family of gravitationally coupled electroweak monopole solutions in Einstein-Weinberg-Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes

    Finite Energy Electroweak Dyon

    Get PDF
    The recent MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss different ways to estimate the mass of the electroweak monopole. We first present a scaling argument which indicates that the mass of the electroweak monopole to be around 4 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strengths of the electromagnetic interaction of WW-boson in the standard model. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC.Comment: arXiv admin note: substantial text overlap with arXiv:hep-th/0210299, arXiv:hep-th/970703

    Magnetic Moments of Heavy Baryons

    Get PDF
    First non-trivial chiral corrections to the magnetic moments of triplet (T) and sextet (S^(*)) heavy baryons are calculated using Heavy Hadron Chiral Perturbation Theory. Since magnetic moments of the T-hadrons vanish in the limit of infinite heavy quark mass (m_Q->infinity), these corrections occur at order O(1/(m_Q \Lambda_\chi^2)) for T-baryons while for S^(*)-baryons they are of order O(1/\Lambda_\chi^2). The renormalization of the chiral loops is discussed and relations among the magnetic moments of different hadrons are provided. Previous results for T-baryons are revised.Comment: 11 Latex pages, 2 figures, to be published in Phys.Rev.

    Comment on Ds∗→Dsπ0D_s^* \to D_s \pi^0 Decay

    Full text link
    We calculate the rate for Ds∗→Dsπ0D_s^* \rightarrow D_s \pi^0 decay using Chiral Perturbation Theory. This isospin violating process results from π0\pi^0 - η\eta mixing, and its amplitude is proportional to (md−mu)/(ms−(mu+md)/2)(m_d - m_u)/\bigl(m_s-(m_u+m_d)/2 \bigr). Experimental information on the branching ratio for Ds∗→Dsπ0D_s^* \rightarrow D_s \pi^0 can provide insight into the pattern of SU(3)SU(3) violation in radiative D∗D^* decays.Comment: 7 pages with 2 figures not included but available upon request, CALT-68-191

    Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb

    Get PDF
    The formation of precise stereotypic connections in sensory systems is critical for the ability to detect and process signals from the environment. In the olfactory system, olfactory sensory neurons (OSNs) project axons to spatially defined glomeruli within the olfactory bulb (OB). A spatial relationship exists between the location of OSNs within the olfactory epithelium (OE) and their glomerular targets along the dorsoventral axis in the OB. The molecular mechanisms underlying the zonal segregation of OSN axons along the dorsoventral axis of the OB are poorly understood. Using robo-2/ (roundabout) and slit-1/ mice, we examined the role of the Slit family of axon guidance cues in the targeting of OSN axons during development. We show that a subset of OSN axons that normally project to the dorsal region of the OB mistarget and form glomeruli in the ventral region in robo-2/ and slit-1/ mice. In addition, we show that the Slit receptor, Robo-2, is expressed in OSNs in a high dorsomedial to low ventrolateral gradient across the OE and that Slit-1 and Slit-3 are expressed in the ventral region of the OB. These results indicate that the dorsal-to-ventral segregation of OSN axons are not solely defined by the location of OSNs within the OE but also relies on axon guidance cues
    • …
    corecore