10,425 research outputs found

    Human Papillomavirus (HPV) Vaccine: Attitudes, Behaviors, and Beliefs of At-Risk Women

    Get PDF
    Cervical cancer is primarily caused by human papillomavirus (HPV) and is the second most common cause of cancer-related mortality among women. Female college students may be at risk for contracting HPV based on their sexual behavior. Following the release of the HPV vaccine, Gardasil®, this cross-sectional study was developed to (1) determine awareness of HPV and Gardasil®, (2) assess attitudes, behaviors, and beliefs about the HPV vaccine, and (3) identify information sources that female college students are accessing. Female college students voluntarily completed a self-administered questionnaire. Statistical analyses included descriptive statistics, Pearson’s correlations and paired sample t-tests. Sexually active respondents would recommend the HPV vaccine to others and disagreed that vaccination would encourage risky sexual behavior. Correlations were identified on how self-reported knowledge influenced attitudes, behaviors, and beliefs regarding the HPV vaccine. These findings should assist in developing integrated public health education efforts for HPV vaccination that are targeted towards this at-risk population

    The Relationship between Resilience and Body Image in College Women

    Get PDF
    Possessing a negative body image is associated with unhealthy eating habits and eating disorders in college women and has been linked to depression and negative feelings of self worth. Limited research exists on protective factors that have the potential to mitigate body image dissatisfaction. This paper examines the relationship of resilience to body image dissatisfaction in college women. Female, undergraduate college students were studied using previously validated measures. Results indicate that increased resilience is associated with improved body image

    Fluctuation, dissipation, and thermalization in non-equilibrium AdS_5 black hole geometries

    Full text link
    We give a simple recipe for computing dissipation and fluctuations (commutator and anti-commutator correlation functions) for non-equilibrium black hole geometries. The recipe formulates Hawking radiation as an initial value problem, and is suitable for numerical work. We show how to package the fluctuation and dissipation near the event horizon into correlators on the stretched horizon. These horizon correlators determine the bulk and boundary field theory correlation functions. In addition, the horizon correlators are the components of a horizon effective action which provides a quantum generalization of the membrane paradigm. In equilibrium, the analysis reproduces previous results on the Brownian motion of a heavy quark. Out of equilibrium, Wigner transforms of commutator and anti-commutator correlation functions obey a fluctuation-dissipation relation at high frequency.Comment: 28 pages, 6 figure

    Iron Displacements and Magnetoelastic Coupling in the Spin-Ladder Compound BaFe2Se3

    Full text link
    We report long-range ordered antiferromagnetism concomitant with local iron displacements in the spin-ladder compound BaFe2_2Se3_3. Short-range magnetic correlations, present at room temperature, develop into long-range antiferromagnetic order below TN_N = 256 K, with no superconductivity down to 1.8 K. Built of ferromagnetic Fe4_4 plaquettes, the magnetic ground state correlates with local displacements of the Fe atoms. These iron displacements imply significant magnetoelastic coupling in FeX4_4-based materials, an ingredient hypothesized to be important in the emergence of superconductivity. This result also suggests that knowledge of these local displacements is essential for properly understanding the electronic structure of these systems. As with the copper oxide superconductors two decades ago, our results highlight the importance of reduced dimensionality spin ladder compounds in the study of the coupling of spin, charge, and atom positions in superconducting materials

    Two-Sided Derivatives for Regular Expressions and for Hairpin Expressions

    Full text link
    The aim of this paper is to design the polynomial construction of a finite recognizer for hairpin completions of regular languages. This is achieved by considering completions as new expression operators and by applying derivation techniques to the associated extended expressions called hairpin expressions. More precisely, we extend partial derivation of regular expressions to two-sided partial derivation of hairpin expressions and we show how to deduce a recognizer for a hairpin expression from its two-sided derived term automaton, providing an alternative proof of the fact that hairpin completions of regular languages are linear context-free.Comment: 28 page

    Heavy Quark Thermalization in Classical Lattice Gauge Theory: Lessons for Strongly-Coupled QCD

    Full text link
    Thermalization of a heavy quark near rest is controlled by the correlator of two electric fields along a temporal Wilson line. We address this correlator within real-time, classical lattice Yang-Mills theory, and elaborate on the analogies that exist with the dynamics of hot QCD. In the weak-coupling limit, it can be shown analytically that the dynamics on the two sides are closely related to each other. For intermediate couplings, we carry out non-perturbative simulations within the classical theory, showing that the leading term in the weak-coupling expansion significantly underestimates the heavy quark thermalization rate. Our analytic and numerical results also yield a general understanding concerning the overall shape of the spectral function corresponding to the electric field correlator, which may be helpful in subsequent efforts to reconstruct it from Euclidean lattice Monte Carlo simulations.Comment: 22 pages. v2: a reference and clarifications added; published versio

    Genetic heterogeneity of hepatitis E virus in Darfur, Sudan, and neighboring Chad.

    Get PDF
    The within-outbreak diversity of hepatitis E virus (HEV) was studied during the outbreak of hepatitis E that occurred in Sudan in 2004. Specimens were collected from internally displaced persons living in a Sudanese refugee camp and two camps implanted in Chad. A comparison of the sequences in the ORF2 region of 23 Sudanese isolates and five HEV samples from the two Chadian camps displayed a high similarity (>99.7%) to strains belonging to Genotype 1. But four isolates collected in one of the Chadian camps were close to Genotype 2. Circulation of divergent strains argues for possible multiple sources of infection

    Orbital Selective Magnetism in the Spin-Ladder Iron Selenides Ba1x_{1-x}Kx_{x}Fe2_2Se3_3

    Full text link
    Here we show that the 2.80(8) {\mu}B/Fe block antiferromagnetic order of BaFe2Se3 transforms into stripe antiferromagnetic order in KFe2Se3 with a decrease in moment to 2.1(1) {\mu}B/Fe. This reduction is larger than expected from the change in electron count from Ba2+^{2+} to K+^{+}, and occurs with the loss of the displacements of Fe atoms from ideal positions in the ladders, as found by neutron pair distribution function analysis. Intermediate compositions remain insulating, and magnetic susceptibility measurements show a suppression of magnetic order and probable formation of a spin-glass. Together, these results imply an orbital-dependent selection of magnetic versus bonded behavior, driven by relative bandwidths and fillings.Comment: Final versio

    Density Matrix Renormalization Group Applied to the Ground State of the XY-Spin-Peierls System

    Full text link
    We use the density matrix renormalization group (DMRG) to map out the ground state of a XY-spin chain coupled to dispersionless phonons of frequency ω% \omega . We confirm the existence of a critical spin-phonon coupling cω0.7% \alpha _c\propto \omega ^{0.7} for the onset of the spin gap bearing the signature of a Kosterlitz-Thouless transition. We also observe a classical-quantum crossover when the spin-Peierls gap Δ\Delta is of order % \omega . In the classical regime, Δ>ω\Delta >\omega , the mean-field parameters are strongly renormalized by non-adiabatic corrections. This is the first application of the DMRG to phonons.Comment: 10 pages, 5 figures. To be published in PR
    corecore