41 research outputs found
A new off-board electrical vehicle battery charger: topology, analysis and design
The extensive use of electric vehicles (EVs) can reduce concerns about climate change and fossil fuel shortages. One of the main obstacles to accepting EVs is the limitation of charging stations, which consists of high-charge batteries and high-energy charging infrastructure. A new transformer-less topology for boost dc-dc converters with higher power density and lower switch stress is proposed in this paper, which may be a suitable candidate for high-power fast-charging battery chargers of EVs. Throughout this paper, two operating modes of the proposed converter, continuous current mode (CCM) and discontinuous current mode (DCM), are analyzed in detail. Additionally, critical inductances and design considerations for the proposed converter are calculated. Finally, real-time verifications based on hardware-in-loop (HiL) simulation are carried out to assess the correctness of the proposed theoretical concepts
Kernel Parameter Optimization for Support Vector Machine Based on Sliding Mode Control
Support Vector Machine (SVM) is a supervised machine learning algorithm, which is used for robust and accurate classification. Despite its advantages, its classification speed deteriorates due to its large number of support vectors when dealing with large scale problems and dependency of its performance on its kernel parameter. This paper presents a kernel parameter optimization algorithm for Support Vector Machine (SVM) based on Sliding Mode Control algorithm in a closed-loop manner. The proposed method defines an error equation and a sliding surface, iteratively updates the Radial Basis Function (RBF) kernel parameter or the 2-degree polynomial kernel parameters, forcing SVM training error to converge below a threshold value. Due to the closed-loop nature of the proposed algorithm, key features such as robustness to uncertainty and fast convergence can be obtained. To assess the performance of the proposed technique, ten standard benchmark databases covering a range of applications were used. The proposed method and the state-of-the-art techniques were then used to classify the data. Experimental results show the proposed method is significantly faster and more accurate than the anchor SVM technique and some of the most recent methods. These achievements are due to the closed-loop nature of the proposed algorithm, which significantly has reduced the data dependency of the proposed method
Sliding Mode Control based Support Vector Machine RBF Kernel Parameter Optimization
Support Vector Machine (SVM) is a learning-based algorithm, which is widely used for classification in many applications. Despite its advantages, its application to large scale datasets is limited due to its use of large number of support vectors and dependency of its performance on its kernel parameter. This paper presents a Sliding Mode Control based Support Vector Machine Radial Basis Function’s kernel parameter optimization (SMC-SVM-RBF) method, inspired by sliding mode closed loop control theory, which has demonstrated significantly higher performance to that of the standard closed loop control technique. The proposed method first defines an error equation and a sliding surface and then iteratively updates the RBF’s kernel parameter based on the sliding mode control theory, forcing SVM training error to converge below a predefined threshold value. The closed loop nature of the proposed algorithm increases the robustness of the technique to uncertainty and improves its convergence speed. Experimental results were generated using nine standard benchmark datasets covering wide range of applications. Results show the proposed SMC-SVM-RBF method is significantly faster than those of classical SVM based techniques. Moreover, it generates more accurate results than most of the state of the art SVM based methods
An optimal approach for load-frequency control of islanded microgrids based on nonlinear model
Due to the increased environmental and economic challenges, in recent years, renewable based distribution generation has been developed. More penetrations from the side of consumers caused a new concept called microgrids which are able to stand with or without connection to the bulk power system. Control of microgrids in islanded mode is very crucial for decreasing the amplitude of frequency deviations as well as damping speed. This chapter aims to propose an optimal combination of FOPD and fuzzy pre-compensated FOPI approach for load-frequency control of microgrids in islanded mode. The optimization parameter of the control scheme is designed by the differential evolution (DE) algorithm which has been improved by a fuzzy approach. In the optimization, control effort is considered as a constraint. Due to the robustness and flexibility of the proposed method, the simulation results have been improved substantially. Robust performance of the proposed control method is examined through sensitivity analysis.fi=vertaisarvioitu|en=peerReviewed