604 research outputs found

    An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes

    Get PDF
    The design and development of current and future gas turbine engines for aircraft propulsio

    An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes

    Get PDF
    ABSTRACT The design and development of current and future gas turbine engines for aircraft propulsion have focused on operating the high pressure turbine at increasingly elevated temperatures and pressures. The drive towards thermal operating conditions near theoretical stoichiometric limits as well as increasingly stringent requirements on reducing harmful emissions, both equate to the temperature profiles exiting combustors and entering turbines becoming less peaked than in the past. This drive has placed emphasis on determining how different types of inlet temperature and pressure profiles affect the first stage airfoil endwalls. The goal of the current study was to investigate how different radial profiles of temperature and pressure affect the heat transfer along the vane endwall in a high pressure turbine. Testing was performed in the Turbine Research Facility located at the Air Force Research Laboratory using an inlet profile generator. Results indicate that the convection heat transfer coefficients are influenced by both the inlet pressure profile shape and the location along the endwall. The heat transfer driving temperature for inlet profiles that are nonuniform in temperature is also discussed. INTRODUCTION The performance and durability of the hot section within gas turbine engines are critical operational issues that present many design and research challenges. The hot section of these engines includes both the combustion chamber and the high pressure turbine, the latter of which includes the endwall regions under investigation in this study. Considering that the hot gas temperatures are well above the melting point of the metal turbine hardware, the heat transfer to and aerodynami

    Runtime verification of parametric properties using SMEDL

    Get PDF
    Parametric properties are typical properties to be checked in runtime verification (RV). As a common technique for parametric monitoring, trace slicing divides an execution trace into a set of sub traces which are checked against non-parametric base properties. An efficient trace slicing algorithm is implemented in MOP. Another RV technique, QEA further allows for nested use of universal and existential quantification over parameters. In this paper, we present a methodology for parametric monitoring using the RV framework SMEDL. Trace slicing algorithm in MOP can be expressed by execution of a set of SMEDL monitors. Moreover, the semantics of nested quantifiers is encoded by a hierarchy of monitors for aggregating verdicts of sub traces. Through case studies, we demonstrate that SMEDL provides a natural way to monitor parametric properties with more potentials for flexible deployment and optimizations

    Monitoring Time Intervals

    Get PDF
    Run-time checking of timed properties requires to monitor events occurring within a specified time interval. In a distributed setting, working with intervals is complicated due to uncertainties about network delays and clock synchronization. Determining that an interval can be closed - i.e., that all events occurring within the interval have been observed - cannot be done without a delay. In this paper, we consider how an appropriate delay can be determined based on parameters of a monitoring setup, such as network delay, clock skew and clock rate. We then propose a generic scheme for monitoring time intervals, parameterized by the detection delay, and discuss the use of this monitoring scheme to check different timed specifications, including real-time temporal logics and rate calculations

    Fair game: exploring the dynamics, perception and environmental impact of ‘surplus’ wild foods in England 10kya-present

    Get PDF
    This paper brings together zooarchaeological data from Neolithic to Post-medieval sites in England to explore the plasticity of cultural attitudes to the consumption of wild animals. It shows how, through time, game has been considered variously as ‘tabooed’ and ‘edible’, each having implications for patterns of biodiversity and wildlife management. The essential points being made are that deeper-time studies can reveal how human perceptions of ‘surplus foods’ have the potential to both create and remedy problems of environmental sustainability and food security. Perhaps more significantly, this paper argues that understanding the bio-cultural past of edible wild animal species has the potential to transform human attitudes to game in the present. This is important at a time when food security and the production of surplus are pressing national and global concerns
    • 

    corecore