45 research outputs found

    B005 Dietary-induced insulin resistance associated with dyslipidemia induces progressive cardiac dysfunction in rats as evidenced by echocardiography

    Get PDF
    BackgroundA major complication of diabetes is the development of cardiac dysfunction in absence of vascular disease. Metabolic disorders such as insulin resistance (IR) and dyslipidemia (DL) might contribute to the induction of diabetic cardiomyopathy (DCM). However, few relevant animal models are currently available for studying the time-course of DCM and evaluating experimental therapeutics. We developed a rodent model of dietary-induced IR combined or not with DL in order to investigate the impact of chronic IR and DL on in vivo myocardial function.Methods & ResultsMale Sprague-Dawley rats were fed a western-type diet (65 % fat ; 15 % fructose ; WD: n=12). DL was induced by combining the western diet with i.p. injections of a nonionic surface-active agent (P-407 ; 0.2mg/kg, 3 times/wk ; WD-P407 n=9). A chow diet was used as control (Chow: n=9). At 6, 11 and 14 wks, cardiac function was assessed by echocardiography. After 6 wks, plasma insulin was significantly increased in both WD and WD-P407 groups (P<0.05 vs. Chow). Fasting blood glucose increased in WD group while plasma lipids markedly accumulated in WD-P407-treated rats (P<0.05 and P<0.01 vs. Chow, respectively). Pulse-wave Doppler indicated impaired diastolic function at 14 wks (E/A wave ratio: WD-P407: 1.42±0.06 vs. Chow: 1.65±0.11). M-mode imaging showed no significant differences in cardiac function and geometry under basal conditions. However, fractional shortening (FS) was significantly depressed under dobutamine stress in WD group at 14 wks (FS in % of baseline: 151±9 % vs 196±7 % ; P<0.05) whereas systolic dysfunction appeared as early as 11 wks and worsened at 14 wks in WD-P407 animals (P<0.05 and P<0.01 vs. Chow, respectively). Finally, compared to Chow, myocardial lipid tissue content were significantly higher in WD and WD-P407 groups, the cardiac lipid accumulation being more pronounced in the later.ConclusionsDL exacerbated cardiac lipotoxicity and functional complications associated with IR. This experimental model of combined IR and DL closely mimics the main clinical manifestations of DCM and might therefore constitute a useful tool for the evaluation of pharmacological treatments

    Ethanol drinking, brain mitochondrial DNA, polyunsaturated fatty acids and effects of dietary anthocyanins

    Get PDF
    Background This study aimed at exploring whether moderate ethanol drinking may have adverse effects on the fatty acids composition and on mitochondrial DNA (mtDNA) of rat brain. A secondary aim was to examine whether dietary antioxidant anthocyanins (ACN) can be protective. Methods One group of rats received ethanol 12% and another water as an exclusive liquid to drink for 8 weeks. In order to test the impact of ACN consumption, two other groups of rats were fed an ACN-rich diet in combination with either ethanol or water. Brain fatty acids were measured by gas chromatography and mtDNA alterations, markers of mitochondrial suffering, were studied through an original real-time qPCR-based protocol. Results Linoleic acid (LA, 18:2n-6) and eicosadienoic acid (20:2n-6) were significantly decreased, by 12% and 31% respectively, in the brains of both ethanol groups. The other brain lipids, including arachidonic acid (20:4n-6) and n-3 polyunsaturated fatty acids, were not modified. These changes were associated with a significant increase in deleted mtDNA (by 28%) in the ethanol group, without total mtDNA depletion. The ACN-rich diet prevented the increase in mtDNA common deletion (mtDNA CD). Conclusion These data demonstrate that moderate ethanol drinking reduces certain brain n-6 and results in mtDNA injury. The antioxidant anthocyanins protect brain mtDNA but do not restore normal n-6 levels. Further studies are required to investigate the consequences of a decrease in n-6 levels in brain

    Poster display IV experimental and instrumentation

    Get PDF

    Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits

    Get PDF
    Anthocyanins are colored water-soluble pigments belonging to the phenolic group. The pigments are in glycosylated forms. Anthocyanins responsible for the colors, red, purple, and blue, are in fruits and vegetables. Berries, currants, grapes, and some tropical fruits have high anthocyanins content. Red to purplish blue-colored leafy vegetables, grains, roots, and tubers are the edible vegetables that contain a high level of anthocyanins. Among the anthocyanin pigments, cyanidin-3-glucoside is the major anthocyanin found in most of the plants. The colored anthocyanin pigments have been traditionally used as a natural food colorant. The color and stability of these pigments are influenced by pH, light, temperature, and structure. In acidic condition, anthocyanins appear as red but turn blue when the pH increases. Chromatography has been largely applied in extraction, separation, and quantification of anthocyanins. Besides the use of anthocyanidins and anthocyanins as natural dyes, these colored pigments are potential pharmaceutical ingredients that give various beneficial health effects. Scientific studies, such as cell culture studies, animal models, and human clinical trials, show that anthocyanidins and anthocyanins possess antioxidative and antimicrobial activities, improve visual and neurological health, and protect against various non-communicable diseases. These studies confer the health effects of anthocyanidins and anthocyanins, which are due to their potent antioxidant properties. Different mechanisms and pathways are involved in the protective effects, including free-radical scavenging pathway, cyclooxygenase pathway, mitogen-activated protein kinase pathway, and inflammatory cytokines signaling. Therefore, this review focuses on the role of anthocyanidins and anthocyanins as natural food colorants and their nutraceutical properties for health. Abbreviations: CVD: Cardiovascular disease VEGF: Vascular endothelial growth factor

    Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats

    No full text
    Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained similar to 0.24 +/- 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 mu L/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids

    Cardiac toxicity of singlet oxygen: implication in reperfusion injury

    No full text
    Oxygen-derived free radicals (O2.-, H2O2, and .OH) that are produced during postischemic reperfusion are currently suspected to be involved in the pathogenesis of tissue injury. Another reactive oxygen species, the electronically excited molecular oxygen (1O2), is of increasing interest in the area of experimental research in cardiology. In this review are discussed the main potential sources of singlet oxygen in the organism, particularly in the myocardium, the various cardiovascular cytotoxic effects induced by this reactive oxygen intermediate, and the growing evidence of its involvement in ischemia/reperfusion injury

    Early pre-diabetic state alters adaptation of myocardial glucose metabolism during ischemia in rats

    No full text
    Pre-diabetic subjects with high insulin secretory capacity have double risk of cardiovascular disease compared with subjects who do not develop insulin-resistance. It is well established that the ability of the myocardium to increase its glycolytic ATP production plays a crucial role in determining cell survival under conditions of ischemia. Up to now, whether the pre-diabetic state reduces the tolerance of the heart to ischemia by affecting its ability to increase its energy production through glycolysis remains unknown. The aim of the present study was to assess whether insulin resistance affects the ability of the myocardium to increase glycolysis under ischemic conditions. Male Wistar rats were fed for 8 weeks a fructose-enriched (33%) diet to induce a pre-diabetic state. Hearts were isolated and subjected to ex-vivo low-flow (2%) ischemia for 30 min. The fructose diet increased sarcolemmal GLUT4 localisation in myocardial cells under basal conditions compared with controls. This effect was not accompanied by increased glucose utilisation. Ischemia induced the translocation of GLUT4 to the plasma membrane in controls but did not significantly modify the distribution of these transporters in pre-diabetic hearts. Glycolytic flux under ischemic conditions was significantly lower in fructose-fed rat hearts compared with controls. The reduction of glycolytic flux during ischemia in fructose-fed rat hearts was not due to metabolic inhibition downstream hexokinase II since no cardiac accumulation of glucose-6-phosphate was detected. In conclusion, our results suggest that the pre-diabetic state reduces the tolerance of the myocardium to ischemia by decreasing glycolytic flux adaptation
    corecore