388 research outputs found

    Wiedemann-Franz law and non-vanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2

    Get PDF
    The in-plane thermal conductivity kappa(T) and electrical resistivity rho(T) of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point, Hc, at which antiferromagnetic order ends. The thermal and electrical resistivities, w(T) and rho(T), show a linear temperature dependence below 1 K, typical of the non-Fermi liquid behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature T* ~ 0.35 K, which depends weakly on H, w(T) and rho(T) both deviate downward and converge in the T = 0 limit. We propose that T* marks the onset of short-range magnetic correlations, persisting beyond Hc. By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at Hc, implying that no fundamental breakdown of quasiparticle behavior occurs in this material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.Comment: 8 figures, 8 page

    Heat Transport as a Probe of Electron Scattering by Spin Fluctuations: the Case of Antiferromagnetic CeRhIn5

    Full text link
    Heat and charge conduction were measured in the heavy-fermion metal CeRhIn5, an antiferromagnet with T_N=3.8 K. The thermal resistivity is found to be proportional to the magnetic entropy, revealing that spin fluctuations are as effective in scattering electrons as they are in disordering local moments. The electrical resistivity, governed by a q^2 weighting of fluctuations, increases monotonically with temperature. In contrast, the difference between thermal and electrical resistivities, characterized by an omega^2 weighting, peaks sharply at T_N and eventually goes to zero at a temperature T^* ~ 8 K. T^* thus emerges as a measure of the characteristic energy of magnetic fluctuations.Comment: 4 pages, 4 figure

    Ballistic magnon transport and phonon scattering in the antiferromagnet Nd2_2CuO4_4

    Full text link
    The thermal conductivity of the antiferromagnet Nd2_2CuO4_4 was measured down to 50 mK. Using the spin-flop transition to switch on and off the acoustic Nd magnons, we can reliably separate the magnon and phonon contributions to heat transport. We find that magnons travel ballistically below 0.5 K, with a thermal conductivity growing as T3T^3, from which we extract their velocity. We show that the rate of scattering of acoustic magnons by phonons grows as T3T^3, and the scattering of phonons by magnons peaks at twice the average Nd magnon frequency.Comment: 4 pages, 3 figures, one figure modifie

    Field-Induced Quantum Critical Point in CeCoIn5

    Get PDF
    The resistivity of the heavy-fermion superconductor CeCoIn5 was measured as a function of temperature, down to 25 mK and in magnetic fields of up to 16 T applied perpendicular to the basal plane. With increasing field, we observe a suppression of the non-Fermi liquid behavior, rho ~ T, and the development of a Fermi liquid state, with its characteristic rho = rho_0 + AT^2 dependence. The field dependence of the T^2 coefficient shows critical behavior with an exponent of 1.37. This is evidence for a field-induced quantum critical point (QCP), occuring at a critical field which coincides, within experimental accuracy, with the superconducting critical field H_c2. We discuss the relation of this field-tuned QCP to a change in the magnetic state, seen as a change in magnetoresistance from positive to negative, at a crossover line that has a common border with the superconducting region below ~ 1 K.Comment: 4 pages, 3 figures (published version

    Nonvanishing Energy Scales at the Quantum Critical Point of CeCoIn5

    Full text link
    Heat and charge transport were used to probe the magnetic field-tuned quantum critical point in the heavy-fermion metal CeCoIn5_5. A comparison of electrical and thermal resistivities reveals three characteristic energy scales. A Fermi-liquid regime is observed below TFLT_{FL}, with both transport coefficients diverging in parallel and TFL→0T_{FL}\to 0 as H→HcH\to H_c, the critical field. The characteristic temperature of antiferromagnetic spin fluctuations, TSFT_{SF}, is tuned to a minimum but {\it finite} value at HcH_c, which coincides with the end of the TT-linear regime in the electrical resistivity. A third temperature scale, TQPT_{QP}, signals the formation of quasiparticles, as fermions of charge ee obeying the Wiedemann-Franz law. Unlike TFLT_{FL}, it remains finite at HcH_c, so that the integrity of quasiparticles is preserved, even though the standard signature of Fermi-liquid theory fails.Comment: 4 pages, 4 figures (published version

    The Origin of Anomalous Low-Temperature Downturns in the Thermal Conductivity of Cuprates

    Full text link
    We show that the anomalous decrease in the thermal conductivity of cuprates below 300 mK, as has been observed recently in several cuprate materials including Pr2−x_{2-x}Cex_xCuO7−δ_{7-\delta} in the field-induced normal state, is due to the thermal decoupling of phonons and electrons in the sample. Upon lowering the temperature, the phonon-electron heat transfer rate decreases and, as a result, a heat current bottleneck develops between the phonons, which can in some cases be primarily responsible for heating the sample, and the electrons. The contribution that the electrons make to the total low-TT heat current is thus limited by the phonon-electron heat transfer rate, and falls rapidly with decreasing temperature, resulting in the apparent low-TT downturn of the thermal conductivity. We obtain the temperature and magnetic field dependence of the low-TT thermal conductivity in the presence of phonon-electron thermal decoupling and find good agreement with the data in both the normal and superconducting states.Comment: 8 pages, 5 figure

    Fermi-surface reconstruction and two-carrier model for the Hall effect in YBa2Cu4O8

    Full text link
    Pulsed field measurements of the Hall resistivity and magnetoresistance of underdoped YBa2Cu4O8 are analyzed self-consistently using a simple model based on coexisting electron and hole carriers. The resultant mobilities and Hall numbers are found to vary markedly with temperature. The conductivity of the hole carriers drops by one order of magnitude below 30 K, explaining the absence of quantum oscillations from these particular pockets. Meanwhile the Hall coefficient of the electron carriers becomes strongly negative below 50 K. The overall quality of the fits not only provides strong evidence for Fermi-surface reconstruction in Y-based cuprates, it also strongly constrains the type of reconstruction that might be occurring.Comment: 5 pages, 4 figures, updated after publication in Physical Review B (Rapid Communication
    • …
    corecore