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Wiedemann-Franz law and nonvanishing temperature scale across the field-tuned
quantum critical point of YbRh2Si2
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The in-plane thermal conductivity κ and electrical resistivity ρ of the heavy-fermion metal YbRh2Si2 were
measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through
the field-tuned quantum critical point Hc, at which antiferromagnetic order ends. The thermal and electrical
resistivities, w ≡ L0T/κ and ρ, show a linear temperature dependence below 1 K, typical of the non-Fermi-liquid
behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to
T = 0. Below a characteristic temperature T � � 0.35 K, which depends weakly on H , w(T ) and ρ(T ) both deviate
downward and converge as T → 0. We propose that T � marks the onset of short-range magnetic correlations,
persisting beyond Hc. By comparing samples of different purity, we conclude that the Wiedemann-Franz law
holds in YbRh2Si2, even at Hc, implying that no fundamental breakdown of quasiparticle behavior occurs in this
material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the
heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.

DOI: 10.1103/PhysRevB.89.045130 PACS number(s): 71.10.Hf, 71.27.+a, 72.15.−v, 42.50.Lc

I. INTRODUCTION

Quantum criticality has emerged as a central paradigm in
the physics of heavy-fermion materials [1,2]. Spin fluctuations
near a magnetic quantum critical point (QCP) lead to unusual
electronic properties, deviating from those expected in the
standard Fermi-liquid theory of metals. These deviations,
called “non-Fermi-liquid (NFL) behavior,” include a linear
temperature dependence of the electrical resistivity ρ, in
contrast to the expected T 2 behavior, and a logarithmic
divergence of the specific heat γ ≡ C/T , as opposed to a
constant γ , as T → 0. A more profound form of NFL behavior
would be a violation of the Wiedemann-Franz (WF) law [3–8],
a robust property of charged fermions. This law states that the
(Lorenz) ratio of the thermal conductivity κ of a metal to its
electrical conductivity σ = 1/ρ has a universal value in the
T = 0 limit:

L ≡ κ

σT
= L0, (1)

where L0 ≡ (π2/3)(kB/e)2. Defining the thermal resistivity as
w ≡ L0T/κ , the WF law may be written as w = ρ at T = 0,
or δ(0) = 0, where δ(T ) ≡ w(T ) − ρ(T ) is the difference
between heat and charge resistivities.

In the heavy-fermion metal CeCoIn5, a QCP is reached by
tuning the magnetic field H to Hc = 5.3 T (H ‖ c) [9,10]. At
Hc, w(T ) and ρ(T ) exhibit a linear T dependence at low T ,
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and so does δ(T ) [11,12]. For currents in the basal plane of
the tetragonal structure (J ⊥ c), δ(T ) deviates downward from
its linear T dependence below T � 0.4 K, and δ(T ) → 0 as
T → 0 [11]. For currents normal to the basal plane (J ‖ c),
however, the linear T dependence of δ(T ) persists down to
the lowest temperatures (∼50 mK), and δ(T ) extrapolates to
a finite value at T = 0 [12]. In other words, CeCoIn5 exhibits
an anisotropic violation of the WF law.

This suggests that a linear T dependence of ρ(T ) may
be a prerequisite for the violation of the WF law at a QCP.
This would be consistent with two previous studies, in which
the WF law was found to be valid at the QCP, namely in the
heavy-fermion metal CeNi2Ge2 (Ref. [13]) and in the ruthenate
Sr3Ru2O7 [14]. Indeed, in neither case is ρ(T ) linear down
to T = 0. An exception may be found in the heavy-fermion
metal YbAgGe, for which a small violation has been reported,
whereby L/L0 = 0.92 ± 0.03, even though the temperature
dependence of ρ(T ) is not linear at the QCP [15].

It is of interest to investigate the WF law in other quantum
critical systems. The heavy-fermion metal YbRh2Si2 is an
ideal candidate for such a study. In zero field, it orders
antiferromagnetically below a Néel temperature TN � 70 mK,
and a small magnetic field suppresses TN to zero, producing a
field-tuned QCP at Hc = 0.66 T for H ‖ c, and at Hc = 0.06 T
for H ⊥ c [16,17], where c is the [001] direction of the tetrag-
onal crystal structure. NFL behavior is observed in YbRh2Si2,
for example, as a linear T dependence of the resistivity (ρ ∝ T )
and a logarithmic T dependence of the specific heat (C/T ∝
ln T ), for H near Hc [16,17]. It was suggested that local critical
fluctuations [18] in this material make the entire Fermi surface
“hot” and cause a breakdown of quasiparticles [17], which
could produce a violation of the WF law.

Two recent reports provide conflicting interpretations on the
validity of the WF law in YbRh2Si2 [19,20]. The data by Pfau
et al. [19], with H ⊥ c, show that, at Hc, w � ρ at the lowest
measured temperature (∼30 mK). However, the authors argue
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TABLE I. Zero-field characteristics of the YbRh2Si2 samples
used to test the Wiedemann-Franz law. The residual resistivity ratio
is defined as the ratio of resistance at room temperature (300 K)
to resistance extrapolated to T = 0 (ρ0): RRR ≡ ρ(300 K)/ρ0. To
remove the uncertainty on ρ0 that comes from the geometric factor,
we set ρ(300 K) = 80 μ	 cm.

Sample RRR ρ0

(μ	 cm)

Pfau et al. [19] No. 1 50 1.6
Pfau et al. [19] No. 2 73 1.1
Machida et al. [20] 90 0.9
A 105 0.75
B 120 0.66

that a contribution to heat transport from paramagnons must
be subtracted from the measured κ , and this implies that the
purely electronic δ(T ) remains finite as T → 0, so that the WF
law is violated at Hc. The data by Machida et al. [20], with
H ‖ c, show that, at Hc, w(T ) → ρ(T ) as T → 0. Here, the
authors argue that the WF law is in fact satisfied at Hc.

In this article, we report measurements of the electrical
resistivity and thermal conductivity of YbRh2Si2, performed
on high-quality single crystals for both field orientations. Both
w(T ) and ρ(T ) exhibit a linear temperature dependence below
1 K, but this dependence does not persist down to 50 mK. Even
at the critical field Hc, it ends at a temperature T � � 0.35 K.
Below T �, both w(T ) and ρ(T ) deviate downward and start
to converge. Because a similar, albeit sharper, drop in (and
convergence of) w(T ) and ρ(T ) occurs below the antiferro-
magnetic ordering temperature TN in YbRh2Si2 at H = 0 and
in the antiferromagnetic heavy-fermion metal CeRhIn5 [21],
we propose that T � marks the onset of short-range magnetic
correlations.

Comparing data at Hc from samples of different ρ0 value,
we conclude that the WF law is satisfied. As we shall show, the
overall behavior of in-plane transport in YbRh2Si2 is similar
to that of in-plane transport in CeCoIn5.

II. EXPERIMENTAL

High-quality single crystals of YbRh2Si2 were grown by
the In flux method with a molar ratio of YbRh2Si2:In = 5:95.
Our method is similar to that of Ref. [22], but without the use of
tantalum tubes. Starting ingredients were mixed in an alumina
crucible and sealed into a quartz tube. The quartz tube was
heated to 1150 ◦C, held constant for 2 hours, and then cooled
to 800 ◦C, where crystals were decanted. The platelet crystals
had dimensions up to 3×3×0.2 mm3 and were of high purity,
as confirmed by their high residual resistivity ratio (RRR). Two
samples, labeled A and B, were cut for electrical resistivity
and thermal conductivity measurements, with their long side
parallel to the [100] crystallographic direction (a axis), for a
length of 1.5–2 mm and cross section of 0.1 mm × 0.1 mm.
Four contacts were made on each sample by soldering silver
wires with a silver-based alloy, giving a contact resistance of
1–2 m	 at low temperature. The samples have RRR = 105
(sample A) and 120 (sample B), slightly higher than the RRR
of crystals used in the two previous studies[19,20] of the WF
law in YbRh2Si2 (see Table I), but slightly lower than the
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FIG. 1. (Color online) Temperature dependence of the in-plane
electrical resistivity of five high-purity single crystals of YbRh2Si2,
in zero field. Data for the two samples used in this study (sample A,
black; sample B, red) are compared to previous data, from Pfau et al.
(Ref. [19]) (No. 1, cyan; No. 2, blue) and Machida et al. (Ref. [20])
(green). The onset of antiferromagnetic order at TN (arrow) is seen to
cause a distinct drop in ρ(T ).

highest value of ∼150 reported so far [17,23,24]. In Fig. 1,
the zero-field ρ(T ) of both samples is compared to the data of
Refs. [19] and [20]. All data are in good agreement, modulo a
rigid shift due to the different ρ0 values.

Thermal conductivity was measured using the same four
contacts as in the four-probe resistivity measurement, in
a standard one-heater-two-thermometers technique [25]. By
using the same contacts, the relative uncertainty between heat
and charge transport measurements is removed, and a precise
comparison of w(T ) and ρ(T ) can be made. For sample A, the
magnetic field was applied parallel to the current direction, in
the basal plane of the tetragonal structure: J ‖ a and H ⊥ c;
for sample B: J ‖ a and H ‖ c.

III. RESULTS

Figure 2 shows w(T ) and ρ(T ) below 1 K, for H ⊥ c

and H ‖ c, at four different values of the applied field. In
all cases, both resistivities show a linear T dependence, a
standard signature of NFL behavior, typical of systems close
to an antiferromagnetic QCP [26,27]. But in contrast to the
archetypal behavior whereby the linear T dependence would
persist down to T = 0 at the QCP [28], the linear T dependence
of w(T ) and ρ(T ) in YbRh2Si2 ends at a finite temperature T �.
In Fig. 3, the downward deviation of w(T ) and ρ(T ) below T �

is highlighted by subtracting the linear background.
Below T �, w(T ) drops more rapidly than ρ(T ), in such a

way that w(T ) converges towards ρ(T ) as T → 0. This is seen
most clearly in Fig. 4, where we zoom on the raw data at low
temperature. A direct comparison with previously reported
data, shown in Fig. 4 for H = Hc, shows that our data are in
good agreement with the data of Pfau et al. [19] for H ⊥ c
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FIG. 2. (Color online) Temperature dependence of the electrical resistivity (ρ; closed circles) and thermal resistivity (w ≡ L0T/κ; open
circles) of YbRh2Si2, for currents in the basal plane (J ‖ a). In the four panels on the left, data from sample A were obtained with a magnetic
field H ⊥ c, for different field strengths as indicated. In the four panels on the right, data from sample B were obtained with H ‖ c. Data in
red correspond to the field-tuned quantum critical point, at Hc � 0.06 T (left; H ⊥ c) and Hc � 0.66 T (right; H ‖ c), respectively. Above a
characteristic temperature T � (arrow), w(T ) and ρ(T ) are both linear in temperature; below T �, they both deviate downward, and converge as
T → 0. T � remains finite even at Hc.

and with the data of Machida et al. [20] for H ‖ c, modulo the
downward shift of our data, due to the higher quality of our
samples.

It is instructive to plot the difference between thermal resis-
tivity and electrical resistivity, δ(T ) ≡ w(T ) − ρ(T ), as done
in Fig. 5. As discussed previously [11,12,21], δ(T ) reflects
the degree to which inelastic scattering is more effective in
degrading a heat current than a charge current. In particular,
this includes small-angle scattering processes that change
the energy of the carriers without affecting their momentum
direction. As seen in Fig. 5, the δ(T ) curves are essentially the
same for H below, at, and above Hc, for both field directions:
a linear T dependence down to 0.2 K, and then a rapid dive

towards zero below 0.2 K. The dive at H = 0 is clearly caused
by antiferromagnetic order below TN (inset of Fig. 5, left
panel). We propose a related mechanism for the similar dive
in δ(T ) at finite H , namely the onset of magnetic correlations.

IV. DISCUSSION

A. Temperature scale T �

Our main finding is the existence of a crossover temperature
T � below which ρ(T ) and w(T ) deviate from their linear T

dependence at higher T . In Fig. 6, T � is plotted in the H -T
diagram of YbRh2Si2, for H ‖ c. It traces a line that rises
smoothly from T � � TN at H = 0 to T � � 0.35 K at H = Hc
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FIG. 3. (Color online) Electrical resistivity ρ(T ) and thermal resistivity w(T ) as a function of temperature, for field directions and strengths
as indicated. A linear fit has been subtracted from the raw data, so that the quantities being plotted are 
(T ) = ρfit − ρ(T ) (charge; closed
circles) and 
(T ) = wfit − w(T ) (heat; open circles), where ρfit and wfit are a linear fit to ρ(T ) and w(T ), respectively, between T = T �

and T = 1.0 K. The two panels on the left show data from sample A (with H ⊥ c); the two panels on the right show data from sample B
(with H ‖ c). In all curves, a downward deviation in ρ(T ) and w(T ) occurs below T � (black dashed line).
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FIG. 4. (Color online) Zoom on the data of Fig. 2 below 0.2 K. With decreasing temperature, the thermal resistivity w(T ) is seen to drop
towards ρ(T ) for both field directions and all field strengths, causing the two resistivities to converge as T → 0. The raw data of Pfau et al.
(Ref. [19]) (red triangles; H ⊥ c) and Machida et al. (Ref. [20]) (red triangles; H ‖ c) are displayed for comparison, at H = Hc. Since w = ρ

as T → 0 in all cases, the raw data satisfy the Wiedemann-Franz law for all values of H , in both field directions.

and beyond. A very similar line exists in the phase diagram
for H ⊥ c. The presence of such a crossover line frames any
description of the electronic behavior in YbRh2Si2.

Above the T � line, the transport properties of YbRh2Si2
exhibit the linear-T resistivity typical of the NFL behavior
observed in the vicinity of a QCP where AF order ends [27,29].
For this regime, it is believed that the entire Fermi surface
becomes “hot,” in the sense that there is intense AF scattering
for all wave vectors, on all parts of the Fermi surface. Indeed,
a linear-T electrical resistivity is observed on the border of
AF order in the single-band quasi-1D organic superconduc-

tor (TMTSF)2PF6 (Ref. [26]) and the multiband quasi-2D
pnictide superconductors Ba(Fe1−xCox)2As2 (Ref. [26]) and
BaFe2(As1−xPx)2 (Ref. [30]). It is also observed at the QCP
for stripe order—a pattern of unidirectional charge and spin
modulations—in cuprates [27,28]. In the heavy-fermion metal
CeCoIn5, both ρ and w were shown to display linear-T
behavior at the field-tuned QCP [12]. This QCP is attributed
to an underlying AF phase [31] hidden by the intervening
superconductivity [9,10].

In YbRh2Si2 at H = 0, the two resistivities, and their
difference, all drop abruptly below TN � 80 mK. A sharp drop
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FIG. 5. (Color online) Difference between the thermal and electrical resistivities of YbRh2Si2, δ(T ) ≡ w(T ) − ρ(T ), as a function of
temperature, for H ⊥ c (left) and H ‖ c (right). Data are plotted for three values of H , as indicated. The red lines are a linear fit to the data
at Hc, between 0.2 and 0.5 K. Insets: Zoom below 0.2 K. The vertical dotted line marks TN (at H = 0). For illustrative purposes, we plot the
function δ(T ) = aT 2 + bT 5 (solid curves), which provides a good description of δ(T ) in the antiferromagnetic heavy-fermion metal CeRhIn5

below TN (see Ref. [21]). This is an example of how δ(T ) could rapidly converge to zero to obey the WF law.
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FIG. 6. (Color online) Magnetic-field-temperature phase dia-
gram of YbRh2Si2, for H ‖ c. (The phase diagram for H ⊥ c is very
similar.) The region of long-range antiferromagnetic order is sketched
in gray, delineated by the Néel temperature TN. The crossover
temperature T � below which the resistivity deviates downward from
its linear T dependence at high temperature is shown for heat transport
(open red circles) and charge transport (closed red circles). The
black square is T � obtained from resistivity data in Ref. [22], for
comparison. The NFL regime of linear-T resistivity is confined to
T > T �, a temperature scale that does not vanish at the quantum
critical point Hc = 0.66 T. We interpret T � as the onset of magnetic
correlations (see text).

in ρ(T ), w(T ), and δ(T ) is also observed in the heavy-fermion
material CeRhIn5, an antiferromagnet with TN = 3.8 K [21].
Clearly, for both materials, the scattering is suppressed when
the long-range magnetic order sets in, at least on some parts
of the Fermi surface, which we call “cold” spots or regions.

Increasing the magnetic field applied to YbRh2Si2 causes
the onset temperature TN for long-range AF order to go to
zero at Hc. However, the temperature scale T � does not go to
zero, but rises instead, to reach a value at Hc which is roughly
2–3 times the zero-field value of TN (see Fig. 6). Now the
resistivity data at H > 0 are very similar to those at H = 0.
Indeed, the in-field ρ(T ) and w(T ) drop below T � in a way
that is remarkably similar to the drop in the zero-field ρ(T ) and
w(T ) below TN (see Figs. 2 and 4). The difference δ(T ) also
behaves in a similar way at H = 0 and H > 0 (Fig. 5). The
rapid drop in δ(T ) at low temperature is roughly consistent
with the drop seen in CeRhIn5 below its TN [21], which is
well described by the function δ(T ) = aT 2 + bT 5 (see insets
of Fig. 5). Since the downward deviations in ρ(T ), w(T ), and
δ(T ) for H = 0 are due to long-range AF order, we infer that
the similar but more gradual deviations seen for H > 0 are
due to short-range magnetic order.

One possibility is that T � is the temperature where the
thermal de Broglie wavelength, ξth ≡ �vF/πkBT , becomes
equal to the AF correlation length, ξAF. In other words, when
T < T �, ξth < ξAF, so that there is AF order on the electron’s
length scale. Using vF = 2000 m/s [32], we get ξth = 16 nm
at T = 0.3 K, implying that ξAF � 40a0 at T �, where a0 is the
in-plane lattice constant.

Two observations are consistent with short-range magnetic
order developing in YbRh2Si2 at H = Hc below T � � 0.35 K.
The specific heat exhibits an upward deviation from its
log (1/T ) NFL dependence below T � 0.3 K [17,33], and
the magnetic susceptibility obeys a Curie-Weiss law, with a
Curie-Weiss temperature of −0.32 K [16]. In other words, the
presence of short-range order at Hc prevents the NFL behavior
in YbRh2Si2 from extending down to T = 0 at the QCP.

The NFL behavior above some weakly field-dependent tem-
perature scale and the recovery of “conventional” quasiparticle
physics at low temperature are reproduced by a simple model
of a Zeeman-driven Lifshitz transition in YRh2Si2 [34]. An-
other possible interpretation for the nonvanishing temperature
scale T � � 0.3 K is a crossover from a regime of weakly
interacting 2D antiferromagnetic fluctuations to a regime of
strongly interacting 3D fluctuations [35].

B. Wiedemann-Franz law

In Fig. 4, we saw how w(T ) falls at low temperature and
converges towards ρ(T ), for all H . In Fig. 5, the difference
δ(T ) between w and ρ decreases rapidly as T → 0, for all H .
In Fig. 7, we reproduce δ(T ) at H = Hc for H ‖ c. The linear
T dependence of the NFL regime above T � � 0.35 K does not
persist down to T = 0: δ(T ) eventually deviates downwards
and exhibits a rapid drop at low temperature. In Fig. 7, we
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FIG. 7. (Color online) Temperature dependence of δ ≡ w − ρ,
the difference between thermal and electrical resistivities, for the
heavy-fermion metals YbRh2Si2 and CeCoIn5, at the critical field
Hc of their field-tuned QCP (for H ‖ c), namely 0.66 T and 5.3 T,
respectively. The current direction is J ‖ a for YbRh2Si2 (red circles),
and either J ‖ a (full black squares) or J ‖ c (open blue squares) for
CeCoIn5 (data from Ref. [12]). Solid lines are a linear fit to the
high-temperature data. For J ‖ a, δ(T ) in both materials falls at low
temperature, so that the Wiedemann-Franz law is satisfied, namely
δ(T ) → 0 at T → 0. In both cases, the fall occurs well below the
temperature scale T �, interpreted as the onset of short-range magnetic
order. By contrast, for J ‖ c in CeCoIn5, there is no finite T � and
δ(T ) is seen to retain its linear temperature dependence down to the
lowest temperature, so that the WF law is violated in this direction
(Ref. [12]).
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see how δ(T ) in CeCoIn5 and YbRh2Si2 are very similar (for
J ‖ a): δ(T ) is linear at high temperature and it drops at low
temperature, below T � 0.4 K in the former and below T �
0.1 K in the latter. In CeCoIn5, δ(T ) clearly vanishes as T → 0,
showing that w = ρ at T = 0, satisfying the WF law. By
analogy, we infer that in the limit of T = 0 the WF law is also
satisfied in YbRh2Si2.

In both materials (for J ‖ a), the linear T dependence of
ρ(T ) at Hc is cut off at a finite T �, and then, at a temperature
well below T �, δ(T ) starts its rapid drop to zero. We associate
the recovery of the WF law at T → 0 with the preceding
onset of short-range magnetic order at T �. The AF correlations
would cause a k-dependent reduction of scattering, so that
“cold” regions appear on the Fermi surface below T �.

By contrast, when J ‖ c, ρ(T ) in CeCoIn5 remains perfectly
linear down to the lowest measured temperature (50 mK) and
w(T ) is also linear all the way down [12]. So unlike for J ‖ a,
there is no finite temperature scale, and T � � 0 (or at least
T � < 0.05 K). And for that current direction (J ‖ c), δ(T )
retains its linear T dependence all the way down. This is true
not only at Hc (see Fig. 7), but also at fields away from Hc

(see Fig. S2 in Ref. [12]). In that context, the extrapolation
to T = 0 is unambiguous. Away from the QCP, at H = 10
T � 2Hc, the extrapolation yields δ(0) = 0, showing the WF
law to be cleanly satisfied. As H → Hc, the entire δ(T ) curves
shift rigidly upwards, causing δ(0) to become nonzero, rising
gradually to reach a maximum value of δ(0) � 0.1 μ	 cm
at Hc = 5.3 T [12]. Therefore, in CeCoIn5, the violation of
the WF law is tuned by the field, cleanly and gradually. This
is not the case in YbRh2Si2: the δ(T ) curves in Fig. 5 at
H < Hc, H = Hc, and H > Hc are not shifted relative to each
other, above T � 0.2 K, i.e., in the range from which δ(0) is
extrapolated. This means that if there really is a nonzero δ(0)
that violates the WF law in YbRh2Si2, then it is not tuned by
the magnetic field (in either orientation), at least in the range
up to H � (2–3)Hc.

The strong anisotropy of transport in CeCoIn5 confirms
that the scattering mechanism in that material—presumably
AF spin fluctuations—is strongly anisotropic, or k dependent.
It would be interesting to see whether the same is true in
YbRh2Si2, by performing transport measurements for J ‖ c.

We stress that our data on YbRh2Si2 are in excellent
agreement with those of Pfau et al. [19] and Machida et al.
[20] (see Fig. 4, for example). So the conclusion reached
by Pfau et al. that the WFL is violated (in the sense that
L/L0 → 0.9 as T → 0 at Hc, for H ⊥ c) is not based on a
difference in the data, but rather on their assumption that there
is a significant contribution from paramagnons, so that κ =
κelectron + κparamagnon. Subtracting this putative contribution
(κparamagnon) would restore the linear T dependence of δ(T )
so that it would extrapolate to δ = 0.15 at T → 0 (see Fig. 5).
Like Machida et al., we disagree with this assumption. One
reason is that any paramagnon contribution should presumably
decrease as one moves away from the QCP. However, the drop
in δ(T ) does not diminish with increasing field above Hc. At
H = 3Hc (H ⊥ c), the drop is as pronounced as at Hc (Fig. 5,
left panel). At H = 7Hc (H ‖ c), the drop in δ(T ) is still very
strong [20].

One way to experimentally test whether the WF violation
claimed by Pfau et al. is real is to investigate how the nonzero
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FIG. 8. (Color online) Comparison of ρ and δ in two samples
of YbRh2Si2 with different levels of disorder, at H = Hc = 0.06 T
(H ⊥ c). Our sample (A; full red dots) has a ρ0 value that is roughly
half that of the sample used by Pfau et al. (Ref. [19]) (No. 1; open blue
circles). (a) This factor 2 difference in elastic scattering causes a large
shift in ρ(T ). (b) By subtracting the elastic term ρ0, we obtain the
purely inelastic contribution to ρ(T ), namely ρin(T ) ≡ ρ(T ) − ρ0.
(c) The question is whether δ(T ) ≡ δin(T ) + δ0 is purely inelastic
or not, i.e., whether δ0 = 0 or not. Pfau et al. proposed that the
right way to extrapolate δ(T ) is as shown by the solid line, yielding
δ0 � 0.13 μ	 cm (Ref. [19]). (d) Ratio of δ(T ) to ρin(T ). The fact
that this ratio is exactly the same for the two samples over the full
temperature interval shows that δ(T ) is entirely inelastic, just as
ρin(T ) is; i.e., δ0 = 0.

δ(0) extrapolated from above the downturn depends on the
level of elastic impurity scattering, i.e., how the apparent
violation depends on ρ0. In Fig. 8, we compare the transport
properties of two samples with different levels of disorder,
namely our sample A and sample No. 1 from Pfau et al., with
ρ0 values that differ by a factor 2. Subtracting ρ0 from ρ(T )
gives us the purely inelastic resistivity, ρin(T ) ≡ ρ(T ) − ρ0,
plotted for the two samples in Fig. 8(b). There is little
ambiguity in how to extrapolate ρ(T ) to T = 0, to get ρ0,
and the resulting ρin does indeed satisfy the condition that
ρin(T → 0) = 0.

The question is whether δ(T ) is also purely inelastic, in
which case it would satisfy the WF law, or whether it in
fact contains a nonzero residual term δ(0), in which case
it would violate the WF law. In other words, is δ0 = 0 in
δ(T ) ≡ δin(T ) + δ0, or is δ0 > 0. As shown in Fig. 8(c), if one
extrapolates δ(T ) to T = 0 from a linear fit above T = 0.10 K,
as illustrated for the data of Pfau et al., then one indeed gets a
nonzero value, namely δ(T → 0) � 0.13 μ	 cm [19].

In Fig. 8(d), we directly compare the measured δ(T ) with
the purely inelastic part of the resistivity, ρin(T ), for each
sample. We see that the ratio δ/ρin is identical in the two
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samples, over the entire temperature interval, despite the large
difference in disorder scattering. This very strongly suggests
that δ(T ) is also purely inelastic. Indeed, if it were not so, i.e., if
δ0 were not zero, then the ratio δ/ρin would diverge as T → 0,
and it would do so differently for the two samples (since the
δ0 values would be different, reflecting the difference in ρ0).
There is no indication of any divergence or any difference. We
conclude that the weight of evidence is against a violation of
the WF law in YbRh2Si2.

It is interesting to consider the magnitude of the inelastic
Lorenz ratio, defined as Lin/L0 ≡ ρin/win. If we assume
that δ is entirely electronic, then Lin/L0 = 1/(1 + δ/ρin).
In YbRh2Si2, the data of Fig. 8(d) then yield Lin(T )/L0 �
0.5–0.7, in the temperature range below 1 K. This is very
much the magnitude expected of a typical metal at low
temperature, where Lin(T )/L0 � 0.4–0.6 [11]. For example,
in the heavy-fermion metals CeRhIn5 and UPt3, Lin/L0 = 0.4
and 0.65, respectively [11]. This strengthens the case for a
purely inelastic δ in YbRh2Si2, i.e. that δ(0) = 0.

V. SUMMARY

To summarize, we have measured heat and charge transport
across the magnetic-field-tuned phase diagram of YbRh2Si2
for fields both parallel and perpendicular to the c axis. For a
current in the basal plane, the thermal and electrical resistivities
exhibit a linear temperature dependence, characteristic of
the non-Fermi-liquid behavior found in the vicinity of an
antiferromagnetic quantum critical point. However, we find
that this non-Fermi-liquid behavior does not extend down to
T = 0, even at the critical field where the long-range AF
order in YbRh2Si2 vanishes. The linear-T regime ends at a
characteristic temperature T �, below which the thermal and
electrical resistivities fall and converge as T → 0. Based on

the similarity between transport signatures of TN at H = 0
and signatures of T � at H > 0 we infer that T � marks the
onset of short-range magnetic order. This short-range order
prevents the NFL behavior from persisting down to T = 0. The
phenomenology is similar to that observed at the field-tuned
quantum critical point of the heavy-fermion metal CeCoIn5.

The existence of a finite temperature scale T � in YbRh2Si2
and CeCoIn5 raises the possibility of a precursor regime
above the onset of long-range antiferromagnetic order, at TN.
An interesting example of this occurs in the iron arsenide
BaFe2As2 doped with Co, where the resistivity deviates from
its linear T dependence below a temperature T � that can be as
high as 2 TN [36].

Finally, by comparing samples of different residual resis-
tivity, we argued that the Wiedemann-Franz law is satisfied
in YbRh2Si2 at the quantum critical point for H ⊥ c, and we
infer that it is most likely satisfied at all fields and for both
directions.
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