1,141 research outputs found
Langmuir probe surveys of an arcjet exhaust
Electrostatic (Langmuir) probes of both spherical and cylindrical geometry have been used to obtain electron number density and temperature in the exhaust of a laboratory arcjet. The arcjet thruster operated on nitrogen and hydrogen mixtures to simulate fully decomposed hydrazine in a vacuum environment with background pressures less than 0.05 Pa. The exhaust appears to be only slightly ionized (less than 1 percent) with local plasma potentials near facility ground. The current-voltage characteristics of the probes indicate a Maxwellian temperature distribution. Plume data are presented as a function of arcjet operating conditions and also position in the exhaust
Rail accelerator technology and applications
Rail accelerators offer a viable means of launching ton-size payloads from the Earth's surface to space. The results of two mission studies which indicate that an Earth-to-Space Rail Launcher (ESRL) system is not only technically feasible but also economically beneficial, particularly when large amounts of bulk cago are to be delivered to space are given. An in-house experimental program at the Lewis Research Center (LeRC) was conducted in parallel with the mission studies with the objective of examining technical feasibility issues. A 1 m long - 12.5 by 12.5 mm bore rail accelerator as designed with clear polycarbonate sidewalls to visually observe the plasma armature acceleration. The general character of plasma/projectile dynamics is described for a typical test firing
Automatic Face Recognition System Based on Local Fourier-Bessel Features
We present an automatic face verification system inspired by known properties
of biological systems. In the proposed algorithm the whole image is converted
from the spatial to polar frequency domain by a Fourier-Bessel Transform (FBT).
Using the whole image is compared to the case where only face image regions
(local analysis) are considered. The resulting representations are embedded in
a dissimilarity space, where each image is represented by its distance to all
the other images, and a Pseudo-Fisher discriminator is built. Verification test
results on the FERET database showed that the local-based algorithm outperforms
the global-FBT version. The local-FBT algorithm performed as state-of-the-art
methods under different testing conditions, indicating that the proposed system
is highly robust for expression, age, and illumination variations. We also
evaluated the performance of the proposed system under strong occlusion
conditions and found that it is highly robust for up to 50% of face occlusion.
Finally, we automated completely the verification system by implementing face
and eye detection algorithms. Under this condition, the local approach was only
slightly superior to the global approach.Comment: 2005, Brazilian Symposium on Computer Graphics and Image Processing,
18 (SIBGRAPI
Rail accelerators for space transportation: An experimental investigation
An experimental program was conducted at the Lewis Research Center with the objective of investigating the technical feasibility of rail accelerators for propulsion applications. Single-stage, plasma driven rail accelerators of small (4 by 6 mm) and medium (12.5 by 12.5 mm) bores were tested at peak accelerating currents of 50 to 450 kA. Streak-camera photography was used to provide a qualitative description of plasma armature acceleration. The effects of plasma blowby and varying bore pressure on the behavior of plasma armatures were studied
Electromagnetic emission experiences using electric propulsion systems: A survey
As electric propulsion systems become ready to integrate with spacecraft systems, the impact of propulsion system radiated emissions are of significant interest. Radiated emissions from electromagnetic, electrostatic, and electrothermal systems have been characterized and results synopsized from the literature describing 21 space flight programs. Electromagnetic radiated emission results from ground tests and flight experiences are presented with particular attention paid to the performance of spacecraft subsystems and payloads during thruster operations. The impacts to transmission of radio frequency signals through plasma plumes are also reviewed
A unifying framework for tolerance analysis in sensing, design, and manufacturing
Journal ArticleIn this work we address the problem of tolerance representation and analysis across the domains of industrial inspection using sensed data, CAD design, and manufacturing. Instead of using geometric primitives in CAD models to define and represent tolerances, we propose the use of stronger methods that are completely based on the manufacturing knowledge for the objects to be inspected. We guide our sensing strategies based on the manufacturing process plans for the parts that are to be inspected and define, compute, and analyze the tolerances of the parts based on the uncertainty in the sensed data along the different toolpaths of the sensed part. We believe that our new approach is the best way to unify tolerances across sensing, CAD, and CAM, as it captures the manufacturing knowledge of the parts to be inspected, as opposed to just CAD geometric representations
An analytical and experimental investigation of resistojet plumes
As a part of the electrothermal propulsion plume research program at the NASA Lewis Research Center, efforts have been initiated to analytically and experimentally investigate the plumes of resistojet thrusters. The method of G.A. Simons for the prediction of rocket exhaust plumes is developed for the resistojet. Modifications are made to the source flow equations to account for the increased effects of the relatively large nozzle boundary layer. Additionally, preliminary mass flux measurements of a laboratory resistojet using CO2 propellant at 298 K have been obtained with a cryogenically cooled quartz crystal microbalance (QCM). There is qualitative agreement between analysis and experiment, at least in terms of the overall number density shape functions in the forward flux region
The LeRC rail accelerators: Test designs and diagnostic techniques
The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed
Role of SUMO-1 and SUMO Interacting Motifs in Rhesus TRIM5α-mediated Restriction
Background
TRIM5α is a member of the tripartite motif family of proteins that restricts retroviral infection in a species-specific manner. The restriction requires an interaction between the viral capsid lattice and the B30.2/SPRY domain of TRIM5α. Previously, we determined that two SUMO interacting motifs (SIMs) present in the B30.2/SPRY domain of human TRIM5α (huTRIM5α) were important for the restriction of N-tropic Murine Leukemia Virus. Here, we examined whether SUMO expression and the SIM1 and SIM2 motifs in rhesus monkey TRIM5α (rhTRIM5α) are similarly important for Human Immunodeficiency Type 1 (HIV-) restriction.
Results
We found that mutation of SIM1 and SIM2 of rhTRIM5α abolished the restriction of HIV-1 virus. Further, knockdown of SUMO-1 in rhTRIM5α expressing cells abolished restriction of HIV-1. These results may be due, in part, to the ability of SUMO-1 to stabilize rhTRIM5α protein expression, as SUMO-1 knockdown increased rhTRIM5α turnover and the mutations in SIM1 and SIM2 led to more rapid degradation than the wild type protein. The NF-κB signaling ability of rhTRIM5α was also attenuated by SUMO-1 knockdown. Finally, upon inhibition of CRM1-dependent nuclear export with Leptomycin B (LMB), wild type rhTRIM5α localized to SUMO-1 bodies in the nucleus, while the SIM1 and SIM2 mutants did not localize to SUMO-1.
Conclusions
Our results suggest that the rhTRIM5α B30.2/SPRY domain is not only important for the recognition of the HIV-1 CA, but it is also important for its association with SUMO-1 or SUMO-1 modified proteins. These interactions help to maintain TRIM5α protein levels and its nuclear localization into specific nuclear bodies
- …