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Abstract 

In this work we address the problem of tolerance 
representation and analysis across the domains 
of industrial inspection using sensed data, CAD 
design, and manufacturing. Instead of using 
geometric primitives in CAD models to define 
and represent tolerances, we propose the use of 
stronger methods that are completely based on 
the manufacturing knowledge for the objects to 
be inspected. We guide our sensing strategies 
based on the manufacturing process plans for 
the parts that are to be inspected and define, 
compute, and analyze the tolerances of the parts 
based on the uncertainty in the sensed data 
along the different toolpaths of the sensed part. 
We believe that our new approach is the best 
way to unify tolerances across sensing, CAD, 
and CAM, as it captures the manufacturing 
knowledge of the parts to be inspected, as op­
posed to just CAD geometric representations. 

1 Introduction 

In this work we address the problem of recovering man­
ufacturing tolerances and deformations from the uncer­
tainty in sensing machine parts. In particular, we uti­
lize the sensor uncertainty to recover robust models of 
machine parts, based on the probabilistic measurements 
recovered, for inspection applications. We design and 
implement a spline-based model that captures manufac­
turing tolerancing based on uncertain sensed data and 
knowledge of possible manufacturing process plans. 

We design and implement our sensing strategies and 
tolerance determination algorithms based on interval 
splines. We believe this is the best way to define a 
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unifying framework, as it captures both parameteriz­
able manufacturing tolerancing errors, and non-easily­
parameterizable ones (toolpaths that produce a surface 
definition, for example). This method is also suitable 
for our purposes as our CAD modeler (The Alpha...l sys­
tem, designed at the University of Utah) is based on 
spline representation, and it is used to produce process 
plans and toolpaths for NC milling machines to manu­
facture the actual parts from CAD models. Our toler­
ancing method captures the mechanical way in which the 
manufacturing tool moves and actually makes a feature, 
surface or curve in a manufacturing process. 

The standard representations for Computer Aided De­
sign include volumetric, boundary and CSG models. 
Current advanced modelers, can produce process plans 
for specific machines in order to manufacture the object. 
We believe that the process plan and associated informa­
tion (e.g., the tool path, the tool to be used, its speed, 
etc.) provide a strong basis for analyzing the manufac­
turing and inspection steps with respect to tolerances. 

A tolerance specification on the shape geometry must 
be transformed into the corresponding tolerance on the 
machining operation and vice versa. This in turn can 
be used to select an appropriate manufacturing process, 
given knowledge of the manufacturing accuracy of the 
process. This yields direct methods for deciding on sens­
ing strategies both to monitor the manufacture of the 
part, as well as for post-manufacturing inspection. These 
sensing strategies are derived from an analysis of where 
the tool path is most likely to deviate from the tolerance 
specification. 

These must all be done as efficiently as possible; III 

particular, it must be: 

• straightforward to choose the cheapest manufactur­
ing process, to go as fast as possible on that ma­
chine, 

• to make as few sensed measurements as possible, 
and 

• to perform as little computation as possible. 



The keys to our approach are: 

• have/use knowledge about each feature and machin­
ing process for that feature, and 

• exploit the tool path representation to guide analy­
sis and sensing strategies. 

The usual approach to validation is to simply measure 
the geometry resulting from the manufacturing process 
and compare it to the nominal geometry from the CAD 
model. We believe that a stronger approach, exploiting 
knowledge of the process plan and the particular man­
ufacturing process, is possible, and that this approach 
permits the automatic synthesis of sensing strategies. 

To achieve this requires a tolerance specification 
which: 

• specifies design geometry tolerance as well as tool­
path tolerances, and 

• helps locate high payoff (i.e., maximal information 
gain) inspection regions. 

We are working with the Alpha_l Computer Aided Ge­
ometric Design system and exploiting its ability to gen­
erate process plans for 3 and 5-axis NC milling machines. 
For these machines, the process is a set of tool paths with 
appropriate tools, speeds, etc., specified. Thus, a sens­
ing strategy is a set of sensing operations carried out at 
particularly high risk parts of the tool path or places on 
the completed part. 

2 Background, Motivation, and 
Methodology 

The traditional approach to structuring sensing strate­
gies and tolerance computation for the inspection of ma­
chine parts has been to utilize the sensed data (range, 
image, and/or touch) and the recovered geometries of 
the sensed objects for guiding the sensors to get more 
data and to do better fittings at the "relevant" or "un­
certain" regions. We propose an approach that is based 
on the knowledge ofthe actual manufacturing process for 
the parts to be inspected, as opposed to only the sensed 
data points and the recovered geometric CAD model. 
Our approach utilizes the knowledge of the process plan 
and the subsequent tool path of the milling machines and 
the errors, uncertainties, and tolerances associated with 
that process to achieve an optimal sensing strategy at 
the relevant regions, features, and manufacturing path 
on the parts to be inspected. We anticipate that this 
approach will not only permit us to answer questions 
concerning design and manufacturing processes, but also 
gives a way to determine places in the process and on the 
part where sensing is useful to ensuring that tolerances 
are met. 

We propose tool paths with tolerances as an instance of 
the manufacturing process (process plan) that provides a 

unifying approach to dealing with tolerance and sensing 
issues across design, manufacturing and inspection. We 
give examples of tolerance-based techniques for manufac­
turing features and for inspection purposes. The relation 
between part error models and tolerance specifications is 
outlined. The initial design of a unified framework for 
manufacturing-based sensing strategies for manufacture 
and inspection is given; the key is to tag tolerances to 
the manufacturing process itself (e.g., we use the tool­
path and tolerance for NC milling). 

The importance of quantifying tolerance in the speci­
fication, design, manufacturing and inspection process is 
obvious. Unfortunately, adequate representations of tol­
erance do not exist which permit dialog between these 
various aspects of the manufacturing process. This lack 
is particularly acute in systems which tightly integrate 
all of the aspects of prototyping (i.e, Manufacturing, 
Design, and Sensing for inspection). We use the tol­
erance specification in conjunction with knowledge of 
the manufacturing process plans to determine more op­
timized sensing strategies. We propose to avoid the use 
of weak methods (e.g., comparing nominal geometry to 
dense range data from the actual part), and to synthe­
size strong process monitoring and inspection strategies 
based on detailed knowledge of geometry, tolerance spec­
ification, manufacturing features and processes, and the 
sensors involved. 

The use of interval Bezier curves for a complete de­
scription of approximation errors was proposed by Seder­
berg and Farouki[5] (see paper for details). The basic 
idea is to extend splines to polynomials whose coeffi­
cients are intervals with well defined arithmetic opera­
tions. Such splines define a region in space rather than 
a curve. This notion captures very nicely the semantics 
of a tolerance specification. We have developed inter­
val curves for both 2D and 3D and algorithms based 
on interval splines for machine toolpath representation. 
We have also implemented toolpath-based algorithms for 
answering tolerance questions in inspection of parts, and 
for structuring coarse-to-fine sensing strategies based on 
tolerance regions around sensed data. 

Our goal is to develop a methodology which helps 
to guarantee that the intended tolerance specification 
is met as efficiently as possible. There issue we ad­
dress in our framework is to validate that the tolerances 
have been achieved in the actual part that is inspected. 
This process involves sensor measurements either dur­
ing the manufacturing phase or post-manufacture in­
spection. To ensure that the tolerance has been met, 
sensors are used to: 

• measure the manufacturing process (e.g., table po­
sition during NC milling), 

• measure parameters of manufacturing features (e.g., 
use a Coordinate Measurement Machine to obtain 



hole diameter), and 

• measure points on the surface directly and analyze 
them. 

Of course, sensor error/uncertainty must be accounted 
for. 

In order to structure the analysis process, we focus 
here on NC milling, and use the tool path as the ba­
sis upon which design and manufacturing tolerance and 
sensor measurements will be compared. Much as opera­
tional semantics allows the meaning of a high level pro­
gram to be defined in terms ofthe particular architecture 
upon which it executes, so can the CAD specification of 
a part be defined in terms of the machining operations 
which produce its shape. Given the CAD geometry for a 
part, a tolerance specification, and a class of NC mill to 
be used, then generic knowledge about such mills can be 
used to generate a desired toolpath with its associated 
tolerance (call it T Pd. Once a specific mill is selected, 
then the nominal tool path from T Pp together with the 
accuracy of the mill determine the actual toolpath (call 
this T Pa These two tool paths allow us to determine a 
great deal about the efficiency and uncertainty regions 
of the process. First, ifTPa C TPd is true, then we know 
that the tolerance should, in principle, be achieved . If 
T Pd - T Pa is large, then the selected machine may be 
too precise, and therefore, too expensive. If the bound­
ary of T Pa is close to that of T Pd, this signals places 
where sensing may be necessary to guarantee the inclu­
sion relation. This also gives insight into how accurate 
the sensing needs to be. Even if T Pa is not contained 
in T Pd , this approach allows us to estimate what per­
centage of milled parts will be out of spec, and thus an 
informed decision can be made whether to tighten the 
accuracy of the machine, or where to sense with high 
probability of part error. Thus, the tool path representa­
tion allows insight into design, manufacture and inspec­
tion in a common framework . 

3 Interval Splines and Generalization: 
Checking that all points reach the 
tolerance goal 

3.1 Interval Splines 

The use of interval Bezier curves for a complete descrip­
tion of approximation errors was proposed by Sederberg 
and Farouki[5] . The basic idea is to extend splines to 
polynomials whose coefficients are intervals with well de­
fined arithmetic operations. Such splines define a region 
in space rather than a curve. This notion captures very 
nicely the semantics of a tolerance specification , espe­
cially when it is generalized in 3D: if the assumption is 
made that the sensing error is Gaussian, then it can be 
described it by an ellipsoid around each sensed point (us­
ing a step value). Thus, along a sensed toolpath, an off­
set surface is produced (see [3]). We have only assumed 

that the enclosing envelopes are described by ellipses in 
planes orthogonal to the toolpath. Hence our algorithm 
allows for representing volumetric error and can easily 
be extended to other shapes than ellipses - which means 
different offset surfaces. This approach will require the 
ability to answer the question: is one ellipse inside the 
other one? as fast as possible - when they are in the 
same plane. The final test will be to check the reliabil­
ity of the proposed algorithm on real sensed data, along 
manufacturing toolpaths on parts that are inspected. 

The algorithm uses a property that is associated with 
curves of the same degree, which is the basis of interval 
splines. Since a Bezier curves of degree k is deduced from 
the control point by the recursive equation (see [4]): 

! 
PP(t) = Pi (j - k ~ i ~ j) 

and for 0 < r < k - 1 
p[+l(t) = tP[(t) + (1 - t)P[_dt) 

when j - k + r ~ i ~ j 
Pf(t) = S(t). 

For curves of same degree, if the corresponding control 
points are on a line (resp. on a plane), then during this 
recursive process each corresponding P[(t) will also be 
on a line (resp. on a plane), hence for all t the different 
evaluations (Sl(t), S2(t) ... ) will give points on a line 
(resp. on a plane). An easy way to ensure that the 
control points are on a line is to have initial points on a 
line too, since the control points are deduced by a linear 
operator. 

3.1.1 2D Interval Splines 

, , 

Figure 1: One Interval Spline 

/ 
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In our 2D representation, an interval is a set of 3 points 
(corresponding to the nominal point and two bounds). 
The spline interpolation is done (on 6 consecutive points) 
separately on each of the 3 corresponding curves (see 
Figure 1). Note that evaluation at any parameter t E 
[0,1] yields 3 points on a line. 



As indicated above, the determination of inclusion of 
one interval spline within another is important . Figure 2 
shows the case where inclusion is true. 

Figure 2: TPa C TDd 

We have developed a technique to answer this question 
(see section 3.2.2) . Moreover, if one interval contains 
another, then the 2-D difference of the two intervals is 
also possible to determine. 

3.1.2 3D Interval Splines 

In 3D, we've assumed that the uncertainty around a 
point is described by an ellipse (in the plane normal to 
the curve). Thus, we also use 3 points to describe the 
ellipse (X for the nominal point, and XI and X2 the two 
extreme points along the two axis of the ellipse). The 
problem reduces to determining whether one ellipse is 
inside another. We have developed an algebraic solution 
to this problem (see section 3.2.3). 

3.2 Description of the Algorithm 

There is no significant difference between the 2D and 
the 3D algorithm, except for the part that compares two 
intervals (resp. two ellipses). Both algorithms use a 
procedure to check if the interval spline from the sensing 
device (We used a GRF-2light stripper scanner) is inside 
the interval spline of the allowable tolerance model. 

3.2.1 Common part 

To verify that one interval spline is inside another , the 
following three steps are used: 

13t
: Putting the parameters of the 2 splines together: 

We want to ensure that for all t the two corresponding 
intervals are on the same line (resp. in the same plane, 
for ellipses). We implement a divide and conquer algo­
rithm, using the sign of: 

X(t) Xl X2 
det y(t) Yl Y2 

1 1 1 

or (in the 3D case) 

x(t) XI X2 X3 

y(t) YI Y2 Y3 

det z(t) Zl Z2 Z3 

1 1 1 1 

Figure 3: Included Interval Spline 

Those two determinants are the equations of the lines 
(or the plane where the ellipse lies) that correspond to 
one interval spline, thus the algorithm cuts the second in­
terval spline to redefine it (the determinant utilizes the 
initial points used to define the first interval spline at 
the beginning). So there is no need to have two inter­
val splines of same degree at the beginning, since the 
second one is completely rebuilt (with the same degree, 
and control points on the same line or plane as the first 
interval spline). See figure 3 where I = (a, b, c) cuts the 
interval spline II in d, f and e to define a new interval: 
with classical methods, that have to be done (see [6]). 

2nd : Compare as many intervals as possible. 
Now that the intervals came together, this part is com­
putable in O(n) where n is the number of points on a 
spline (resp . ellipses) . 

3,.d When 2nd fails, check if it's an ending: 
If not, then the inclusion fails. This check has to be 
made as both splines do not necessarily begin or end at 
the same time. 
To check an ending, the methods in 2D and 3D are very 
similar. The method utilizes the fact that the sign of 
the determinant of vectors gives the orientation of such 
a frame - when it is compared to the canonic frame . 
Hence, comparing two determinants can decide whether 
two points are on the same side of a line or a plane. See 
figure 4 for the 2D vectors. 

For example, in 2D you compare the signs of det(V, VI) 
and det(V, V2). A same sign means the points are on the 
same side. 
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Figure 4: Two Interval Splines 
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Figure 5: How to compare two intervals that are not 
necessarily parallel 

3.2.2 Comparing two intervals 

Here we check to ensure that 0 < V.V; < 11V112 (i = 
1,2), and to check the angles between the vectors (V, V;) 
(i = 1,2) (see figure 5). 

3.2.3 Algebraic Solution to Ellipse Inclusion 

If the two ellipses do not intersect and if the center of 
one is inside the other, then one is contained by the other 
one. For the intersection of ellipses, we have developed 
an algebraic solution using the Sturm Theorem (see [1] 
or [2] for more details). 
We assume that the implicit equation of the ellipse with 
center X, and which go through the extreme points X I 
and X 2 (assumed to be along the 2 orthogonal axis, but 
it is not necessarily the case along the curve) is given by 
the following: 

t k V- (Xl-XI d \/.- (X2- X I th a e I = IIxl-xli an 2 = IIx2 -x12 en: 

We also also assume that the second ellipse has the fol­
lowing parametric equation (same approximation): 

M(t) = X' + ~X'X' + (I - t
2
) X'X' 

1 + t2 I 1 + t2 2 

substituting this point in the implicit equation of the 
other ellipse gives the following polynomial of degree 4: 

(XX'.~ + 2tX;X'.~ + (I - t2)X~X'.VI)2 

+(XX'. V2 + 2tX;X'. V; + (I - t2)X~X'. V;)2 = (I + t2)2 

The real roots - if they exist - realizes up to 4 points 
of intersection of those 2 ellipses. The Sturm theorem on 
polynomials suggests an algorithm to find the number of 
roots of any polynomial. If this algorithm is applied on 
a polynomial with symbolic variables as its coefficients, 
one can get a condition that determines when (and only 
when) the polynomial has a real root. If this is per­
formed on the polynomial X 4 + aX2 + bX + C we find I: 

r = 2a3 - 8ac+ 9b2 

~ = 16a4c - 4a3b2 - 128a2c2 + 144ab2c 
- 27 b4 + 256c3 

X 4 + aX2 + bX + c has no real roots if and only if 
(a ~ 0 and ~ > 0) or (a> 0 and r = 0) or (a < 0 and 

r > 0 and ~ > 0) 

If the polynomial X 4 + dX3 is viewed as the beginning 
of the expansion of (X + a)4 then one can see that an 
appropriate translation transforms any degree 4 polyno­
mial into a polynomial T 4+aT2+bT+c with T = X -a. 
For our problem, the resulting values of a,b and care 
given by the equations: 

Al = -X~X'.~ 
A2 = -X~X'.V; 
CI = (XX' + X~X').~ 
A = JA~ +A~ 
C= JCf+C~ 

BI = 2X;X'.~ 
B2 = 2X;X'. V; 
C2 = (XX' + X~X').V; 
B = JBr+B~ 

then P(t) = C4t4 + C3t3 + C2t2 + Cit + Co with 

C4 = A2 - 1 C3 = 2(AIBI + A2B2) 
C2 = B2 + 2(A I CI + A2C2 - I) 

CI = 2(BI CI + B2C2) Co = C2 
- 1 

and finally, we can find a and then a, band c: 

b = CI - 4c4a3 - 2a( C2 - 6c4a2) 
C4 

Co - C4a4 + a2(c2 - 6c4a2) - a(ci - 4c4a3) c = -'--....:....------'-....::....-----=--'-----'-...:.--"--....:... 
C4 

1 result taken from the course "geometrie semie­
algebrique" from Professor Coste (University of Rennes, 
France), DEA IMA. 



4 Experimental Results 

4.1 Tests on some mathematical curves 
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Figure 6: Case when the tolerance goal fails clearly 
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Figure 7: Opened tore with a vertical deformation 

Tests were carried out both in 2D and 3D , but since 3D is 
more relevant to this project (and more difficult) we will 
only describe the 3D experiments. We have done some 
tests on 3D lines, parabolas, and sin curves, surrounded 
by ellipses that were allowed to turn around the central 
curve with different speeds. The tests show that it is 
very important to ensure that the surface do not cross 
itself, and that the algorithm will only compare the first 
connected component of the common part - thus, if there 
is an intersection only on the second connected compo­
nent, the algorithm will not find it. 

We have many results from different mathematical 
curves, and the algorithm works as expected, with or 

without an intersection. The figure 6 shows a case then 
the inside surface has been lifted enough to make an in­
tersection. Figure 7 is a regular case. 

4.2 Tests along the sensed tool path for an 
inspected cover plate 

The algorithm was tried on real sensed data, from the 
GRF-2 scanner, along a toolpath from a manufactured 
cover plate pocket. The scanner was not very accurate, 
so first we recognized pieces of lines and arcs out of the 
noisy points from the scanner and defined those as our 
nominal curve. This is not a bad approximation as the 
NC milling machine tool actually moves only in straight 
line and curve segments. For each points from the scan­
ner we find the closest point to this nominal curve and -
eventually - increase the radius of the sphere around the 
nominal point to include the point from the scanner. Fi­
nally, we smooth the values from the radius 40 times and 
define the surface with circles orthogonal to the path. 
Our algorithm compares it to the tolerance spline model, 
a few runs produced a good idea of the minimum specifi­
cations. Notice that both nominal curves from the model 
and from the scanner are quite different at some spatial 
instances, certainly because of a scale factor or a defor­
mation from the scanner. Accurate data from a CMM 
along a toolpath would produce a much more precise 
input for the algorithm. 
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Figure 8: The points from the scanner and the computed 
offset surface: cutting of the inner pocket 

The figures 8 and 9 represent the inner profile, and 
figure 10 is the outer profile of the cover plate pocket. 
For the first one, we have found that a radius around 
the nominal curve of the model should be more than 
0.12 cm. For the outer profile, we have found that it 
should be more than 0.065 cm. It should be obvious that 
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Figure 10: The points from the scanner and the com­
puted offset surface: a detail of the outer pocket 

more precise results can be obtained with more runs. 
As one can see on the cross section of the outer pocket 
(figure 10), a few bad points can badly influence the 
result, specially if there is already an error between the 
two nominal curves. 

5 Conclusions 

We propose tool paths with tolerances as a unifying ap­
proach to dealing with tolerance issues across design, 
manufacturing and inspection. Not only does this permit 
us to answer questions concerning design and manufac­
turing processes, but also gives a way to determine places 
in the process and on the part where sensing is useful to 
ensuring that tolerances are met. We have developed al­
gorithms and implementations based on interval splines. 
We consider our major contributions to be: 

• Proposing inspection strategies based on manufac­
turing knowledge as opposed to data or geometry 
driven techniques. 

• Proposing a new unifying framework for tolerance 
representation, analysis, and recovery, across man­
ufacturing, design, and sensing for inspection. 

• Showing that lower-level manufacturing features 
such as tool paths provide a unified framework to 
analyze tolerances in design and manufacture of ma­
chined parts. 

• Toolpath-based computational framework for er­
ror, uncertainty, and tolerance representation in the 
manufacturing, CAD, and inspection domains. 

• Using a CAD specification of a part defined in terms 
of the machining operations (toolpaths) which pro­
duce its shape to structure the sensing strategy, de­
sign, and manufacturing processes (analogous to op­
erational semantics for defining a high level program 
in terms of the particular architecture upon which 
it executes). 

• Using 2-D and 3-D interval Bezier curves for tool­
path representation, and developing the correspond­
ing interval spline algorithms to answer tolerance 
questions across sensing, design, and manufactur­
ing. 
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