14,408 research outputs found

    A discrete time relativistic Toda lattice

    Full text link
    Four integrable symplectic maps approximating two Hamiltonian flows from the relativistic Toda hierarchy are introduced. They are demostrated to belong to the same hierarchy and to examplify the general scheme for symplectic maps on groups equiped with quadratic Poisson brackets. The initial value problem for the difference equations is solved in terms of a factorization problem in a group. Interpolating Hamiltonian flows are found for all the maps.Comment: 32 pages, LaTe

    Magnetoresistance, noise properties and the Koshino-Taylor effect in the quasi-1D oxide KRu_4O_8

    Full text link
    The low temperature electronic and galvanomagnetic transport properties of the low dimensional oxide KRu_4O_8 are experimentally considered. A quadratic temperature variation of the resistivity is observed to be proportional to the residual resistivity. It shows the role of inelastic electron scattering against impurities, i.e. a large Koshino-Taylor effect, rather than a consequence of strong electronic correlations. In the same temperature range, the Kohler rule is not fulfilled. The resistance noise increases also sharply, possibly due to a strong coupling of carriers with lattice fluctuations in this low dimensional compound.Comment: accepted for publication in Europhysics Lette

    A Factorization Law for Entanglement Decay

    Full text link
    We present a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement upon passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.Comment: 4 pages, 5 figure

    Van der Waals interaction between microparticle and uniaxial crystal with application to hydrogen atoms and multiwall carbon nanotubes

    Full text link
    The Lifshitz theory of the van der Waals force is extended for the case of an atom (molecule) interacting with a plane surface of an uniaxial crystal or with a long solid cylinder or cylindrical shell made of isotropic material or uniaxial crystal. For a microparticle near a semispace or flat plate made of an uniaxial crystal the exact expressions for the free energy of the van der Waals and Casimir-Polder interaction are presented. An approximate expression for the free energy of microparticle- cylinder interaction is obtained which becomes precise for microparticle-cylinder separations much smaller than cylinder radius. The obtained expressions are used to investigate the van der Waals interaction between hydrogen atoms (molecules) and graphite plates or multiwall carbon nanotubes. To accomplish this the behavior of graphite dielectric permittivities along the imaginary frequency axis is found using the optical data for the complex refractive index of graphite for the ordinary and extraordinary rays. It is shown that the position of hydrogen atoms inside multiwall carbon nanotubes is energetically preferable compared with outside.Comment: 23 pages, 8 figures, 2 tables. Minor corrections are made and new references added. Accepted for publication in Phys. Rev.

    Theory of vortex lattice effects on STM spectra in d-wave superconductors

    Full text link
    Theory of scanning tunneling spectroscopy of low energy quasiparticle (QP) states in vortex lattices of d-wave superconductors is developed taking account of the effects caused by an extremely large extension of QP wavefunctions in the nodal directions and the band structure in the QP spectrum. The oscillatory structures in STM spectra, which correspond to van Hove singularities are analysed. Theoretical calculations carried out for finite temperatures and scattering rates are compared with recent experimental data for high temperature cuprates.Comment: 4 pages, 3 eps figures, M2S-HTSC-VI conference paper, using Elsevier style espcrc2.st

    Lowest weight representations of super Schrodinger algebras in low dimensional spacetime

    Full text link
    We investigate the lowest weight representations of the super Schrodinger algebras introduced by Duval and Horvathy. This is done by the same procedure as the semisimple Lie algebras. Namely, all singular vectors within the Verma modules are constructed explicitly then irreducibility of the associated quotient modules is studied again by the use of singular vectors. We present the classification of irreducible Verma modules for the super Schrodinger algebras in (1+1) and (2+1) dimensional spacetime with N = 1, 2 extensions.Comment: 10pages, talk given at GROUP28 conference New Castle 26-30th July 2010, reference adde

    Heavy fermion superconductivity and magnetic order in non-centrosymmetric CePt3SiCePt_3Si

    Full text link
    CePt3Si\rm CePt_3Si is a novel heavy fermion superconductor, crystallising in the CePt3B\rm CePt_3B structure as a tetragonally distorted low symmetry variant of the AuCu3\rm AuCu_3 structure type. CePt3Si\rm CePt_3Si exhibits antiferromagnetic order at TN≈2.2T_N \approx 2.2 K and enters into a heavy fermion superconducting state at Tc≈0.75T_c \approx 0.75 K. Large values of Hc2′≈−8.5H_{c2}' \approx -8.5 T/K and Hc2(0)≈5H_{c2}(0) \approx 5 T refer to heavy quasiparticles forming Cooper pairs. Hitherto, CePt3Si\rm CePt_3Si is the first heavy fermion superconductor without a center of symmetry.Comment: 4 pages, 4 figure

    Poisson structures for reduced non-holonomic systems

    Full text link
    Borisov, Mamaev and Kilin have recently found certain Poisson structures with respect to which the reduced and rescaled systems of certain non-holonomic problems, involving rolling bodies without slipping, become Hamiltonian, the Hamiltonian function being the reduced energy. We study further the algebraic origin of these Poisson structures, showing that they are of rank two and therefore the mentioned rescaling is not necessary. We show that they are determined, up to a non-vanishing factor function, by the existence of a system of first-order differential equations providing two integrals of motion. We generalize the form of that Poisson structures and extend their domain of definition. We apply the theory to the rolling disk, the Routh's sphere, the ball rolling on a surface of revolution, and its special case of a ball rolling inside a cylinder.Comment: 22 page

    The environment effect on operation of in-vessel mirrors for plasma diagnostics in fusion devices

    Get PDF
    First mirrors will be the plasma facing components of optical diagnostic systems in ITER. Mirror surfaces will undergo modification caused by erosion and re-deposition processes [1,2]. As a consequence, the mirror performance may be changed and may deteriorate [3,4]. In the divertor region it may also be obscured by deposition [5-7]. The limited access to in-vessel components of ITER calls for testing the mirror materials in present day devices in order to gather information on the material damage and degradation of the mirror performance, i.e. reflectivity. A dedicated experimental programme, First Mirror Test (FMT), has been initiated at the JET tokamak within the framework Tritium Retention Studies (TRS).Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France).Submitted by B. Schunke on behalf of V. Voytseny
    • …
    corecore