5,192 research outputs found

    High-temperature terahertz optical diode effect without magnetic order in polar FeZnMo3_3O8_8

    Full text link
    We present a terahertz spectroscopic study of polar ferrimagnet FeZnMo3_3O8_8. Our main finding is a giant high-temperature optical diode effect, or nonreciprocal directional dichroism, where the transmitted light intensity in one direction is over 100 times lower than intensity transmitted in the opposite direction. The effect takes place in the paramagnetic phase with no long-range magnetic order in the crystal, which contrasts sharply with all existing reports of the terahertz optical diode effect in other magnetoelectric materials, where the long-range magnetic ordering is a necessary prerequisite. In \fzmo, the effect occurs resonantly with a strong magnetic dipole active transition centered at 1.27 THz and assigned as electron spin resonance between the eigenstates of the single-ion anisotropy Hamiltonian. We propose that the optical diode effect in paramagnetic FeZnMo3_3O8_8 is driven by signle-ion terms in magnetoelectric free energy

    Intrinsic Electrical Transport Properties of Monolayer Silicene and MoS2 from First Principles

    Full text link
    The electron-phonon interaction and related transport properties are investigated in monolayer silicene and MoS2 by using a density functional theory calculation combined with a full-band Monte Carlo analysis. In the case of silicene, the results illustrate that the out-of-plane acoustic phonon mode may play the dominant role unlike its close relative - graphene. The small energy of this phonon mode, originating from the weak sp2 bonding between Si atoms, contributes to the high scattering rate and significant degradation in electron transport. In MoS2, the longitudinal acoustic phonons show the strongest interaction with electrons. The key factor in this material appears to be the Q valleys located between the {\Gamma} and K points in the first Brillouin zone as they introduce additional intervalley scattering. The analysis also reveals the potential impact of extrinsic screening by other carriers and/or adjacent materials. Subsequent decrease in the actual scattering rate can be drastic, warranting careful consideration. Finally, the effective deformation potential constants are extracted for all relevant intrinsic electron-phonon scattering processes in both materials

    Spontaneous patterning of quantum dots at the air-water interface

    Get PDF
    Nanoparticles deposited at the air-water interface are observed to form circular domains at low density and stripes at higher density. We interpret these patterns as equilibrium phenomena produced by a competition between an attraction and a longer-ranged repulsion. Computer simulations of a generic pair potential with attractive and repulsive parts of this kind, reproduce both the circular and stripe patterns. Such patterns have a potential use in nanoelectronic applications

    Parallel fabrication and single-electron charging of devices based on ordered, two-dimensional phases of organically functionalized metal nanocrystals

    Get PDF
    A parallel technique for fabricating single-electron, solid-state capacitance devices from ordered, two-dimensional closest-packed phases of organically functionalized metal nanocrystals is presented. The nanocrystal phases were prepared as Langmuir monolayers and subsequently transferred onto Al-electrode patterned glass substrates for device construction. Alternating current impedance measurements were carried out to probe the single-electron charging characteristics of the devices under both ambient and 77 K conditions. Evidence of a Coulomb blockade and step structure reminiscent of a Coulomb staircase is presented

    Unexpected Structures for Intercalation of Sodium in Epitaxial Graphene-SiC Interfaces

    Get PDF
    We show using scanning tunneling microscopy, spectroscopy, and ab initio calculations that several intercalation structures exist for Na in epitaxial graphene on SiC(0001). Intercalation takes place at room temperature and Na electron-dopes the graphene. It intercalates in-between single-layer graphene and the carbon-rich interfacial layer. It also penetrates beneath the interfacial layer and decouples it to form a second graphene layer. This decoupling is accelerated by annealing and is verified by direct Na deposition onto the interface layer. Our observations show that intercalation in graphene is fundamentally different than in graphite and is a versatile means of electronic control.Comment: 10 pages text, 2 pages, references, and 4 figure page

    Decoherence Driven Quantum Transport

    Full text link
    We propose a new mechanism to generate a dc current of particles at zero bias based on a noble interplay between coherence and decoherence. We show that a dc current arises if the transport process in one direction is maintained coherent while the process in the opposite direction is incoherent. We provide possible implementations of the idea using an atomic Michelson and an atomic Aharonov-Bohm interferometer.Comment: 4 pages, 3 figure

    Lymphoscintigraphy and triangulated body marking for morbidity reduction during sentinel node biopsy in breast cancer

    Get PDF
    Current trends in patient care include the desire for minimizing invasiveness of procedures and interventions. This aim is reflected in the increasing utilization of sentinel lymph node biopsy, which results in a lower level of morbidity in breast cancer staging, in comparison to extensive conventional axillary dissection. Optimized lymphoscintigraphy with triangulated body marking is a clinical option that can further reduce morbidity, more than when a hand held gamma probe alone is utilized. Unfortunately it is often either overlooked or not fully understood, and thus not utilized. This results in the unnecessary loss of an opportunity to further reduce morbidity. Optimized lymphoscintigraphy and triangulated body marking provides a detailed 3 dimensional map of the number and location of the sentinel nodes, available before the first incision is made. The number, location, relevance based on time/sequence of appearance of the nodes, all can influence 1) where the incision is made, 2) how extensive the dissection is, and 3) how many nodes are removed. In addition, complex patterns can arise from injections. These include prominent lymphatic channels, pseudo-sentinel nodes, echelon and reverse echelon nodes and even contamination, which are much more difficult to access with the probe only. With the detailed information provided by optimized lymphoscintigraphy and triangulated body marking, the surgeon can approach the axilla in a more enlightened fashion, in contrast to when the less informed probe only method is used. This allows for better planning, resulting in the best cosmetic effect and less trauma to the tissues, further reducing morbidity while maintaining adequate sampling of the sentinel node(s)

    Improving the boundary efficiency of a compact finite difference scheme through optimising its composite template

    Get PDF
    This paper presents efforts to improve the boundary efficiency and accuracy of a compact finite difference scheme, based on its composite template. Unlike precursory attempts the current methodology is unique in its quantification of dispersion and dissipation errors, which are only evaluated after the matrix system of equations has been rearranged for the derivative. This results in a more accurate prediction of the boundary performance, since the analysis is directly based on how the derivative is represented in simulations. A genetic algorithm acts as a comprehensive method for the optimisation of the boundary coefficients, incorporating an eigenvalue constraint for the linear stability of the matrix system of equations. The performance of the optimised composite template is tested on one-dimensional linear wave convection and two-dimensional inviscid vortex convection problems, with uniform and curvilinear grids. In all cases, it yields substantial accuracy and efficiency improvements while maintaining stable solutions and fourth-order accuracy

    The Globular Cluster System of the Coma cD Galaxy NGC 4874 from Hubble Space Telescope ACS and WFC3/IR Imaging

    Get PDF
    We present new HST optical and near-infrared (NIR) photometry of the rich globular cluster (GC) system of NGC 4874, the cD galaxy in the core of the Coma cluster (Abell 1656). NGC 4874 was observed with the HST Advanced Camera for Surveys in the F475W (g) and F814W (I) passbands and the Wide Field Camera 3 IR Channel in F160W (H). The GCs in this field exhibit a bimodal optical color distribution with more than half of the GCs falling on the red side at g-I > 1. Bimodality is also present, though less conspicuously, in the optical-NIR I-H color. Consistent with past work, we find evidence for nonlinearity in the g-I versus I-H color-color relation. Our results thus underscore the need for understanding the detailed form of the color-metallicity relations in interpreting observational data on GC bimodality. We also find a very strong color-magnitude trend, or "blue tilt," for the blue component of the optical color distribution of the NGC 4874 GC system. A similarly strong trend is present for the overall mean I-H color as a function of magnitude; for M_814 < -10 mag, these trends imply a steep mass-metallicity scaling with ZMGC1.4±0.4Z\propto M_{\rm GC}^{1.4\pm0.4}, but the scaling is not a simple power law and becomes much weaker at lower masses. As in other similar systems, the spatial distribution of the blue GCs is more extended than that of the red GCs, partly because of blue GCs associated with surrounding cluster galaxies. In addition, the center of the GC system is displaced by 4+/-1 kpc towards the southwest from the luminosity center of NGC 4874, in the direction of NGC 4872. Finally, we remark on a dwarf elliptical galaxy with a noticeably asymmetrical GC distribution. Interestingly, this dwarf has a velocity of nearly -3000 km/s with respect to NGC 4874; we suggest it is on its first infall into the cluster core and is undergoing stripping of its GC system by the cluster potential.Comment: 24 pages, 20 figures, accepted for publication in Ap
    corecore