47 research outputs found

    Novel battery thermal management via scalable dew-point evaporative cooling

    Get PDF
    Thermal management is critical to safety, stability, and durability of battery energy storage systems. Existing passive and active air cooling are not competent when the cooling performance, energy efficiency and cost of the thermal management system are drawing concurrent concerns. Here we propose dew-point evaporative cooling as a novel active air-cooling approach for large battery systems. Its capability of cooling the air towards its dew-point temperature with simple working principle and great electrical efficiency offers an ideal solution. Therefore, a scalable dew-point evaporative cooling technology was developed, and a large-scale cooler was constructed which could deliver 2.9–6.7 kW cooling capacity with 8.9–28.9 coefficient of performance (COP). To demonstrate its performance for battery thermal management, we took a 20 Ah lithium iron phosphate (LFP) prismatic pouch cells for a case study whose complex dynamic electrochemical and thermal responses were investigated via lock-in thermography experiments and electrochemical-thermal modeling. The potential of dew-point evaporative cooling for battery cooling was explored via the multi-physics coupling of battery and cooler models. This study elucidates that dew-point evaporative cooling can efficiently cool a battery by 3.0–13.6 °C lower than the cases with only forced convection, and control the battery operating temperature within an ideal operating range of 20–40 °C

    N-Octanoyl-Dopamine inhibits cytokine production in activated T-cells and diminishes MHC-class-II expression as well as adhesion molecules in IFN gamma-stimulated endothelial cells

    Get PDF
    IFN gamma enhances allograft immunogenicity and facilitates T-cell mediated rejection. This may cause interstitial fibrosis and tubular atrophy (IFTA), contributing to chronic allograft loss. We assessed if inhibition of T-cell activation by N-octanoyl dopamine (NOD) impairs adherence of activated T-cells to endothelial cells and the ability of activated T-cells to produce IFN gamma. We also assessed if NOD affects IFN gamma mediated gene expression in endothelial cells. The presence of NOD during T-cell activation significantly blunted their adhesion to unstimulated and cytokine stimulated HUVEC. Supernatants of these T-cells displayed significantly lower concentrations of TNF alpha and IFN gamma and were less capable to facilitate T-cell adhesion. In the presence of NOD VLA-4 (CD49d/CD29) and LFA-1 (CD11a/CD18) expression on T-cells was reduced. NOD treatment of IFN gamma stimulated HUVEC reduced the expression of MHC class II transactivator (CIITA), of MHC class II and its associated invariant chain CD74. Since IFTA is associated with T-cell mediated rejection and IFN gamma to a large extent regulates immunogenicity of allografts, our current data suggest a potential clinical use of NOD in the treatment of transplant recipients. Further in vivo studies are warranted to confirm these in vitro findings and to assess the benefit of NOD on IFTA in clinically relevant models

    Characterization and Utilization of the Flexor Digitorum Brevis for Assessing Skeletal Muscle Function

    Get PDF
    Abstract Background The ability to assess skeletal muscle function and delineate regulatory mechanisms is essential to uncovering therapeutic approaches that preserve functional independence in a disease state. Skeletal muscle provides distinct experimental challenges due to inherent differences across muscle groups, including fiber type and size that may limit experimental approaches. The flexor digitorum brevis (FDB) possesses numerous properties that offer the investigator a high degree of experimental flexibility to address specific hypotheses. To date, surprisingly few studies have taken advantage of the FDB to investigate mechanisms regulating skeletal muscle function. The purpose of this study was to characterize and experimentally demonstrate the value of the FDB muscle for scientific investigations. Methods First, we characterized the FDB phenotype and provide reference comparisons to skeletal muscles commonly used in the field. We developed approaches allowing for experimental assessment of force production, in vitro and in vivo microscopy, and mitochondrial respiration to demonstrate the versatility of the FDB. As proof-of principle, we performed experiments to alter force production or mitochondrial respiration to validate the flexibility the FDB affords the investigator. Results The FDB is made up of small predominantly type IIa and IIx fibers that collectively produce less peak isometric force than the extensor digitorum longus (EDL) or soleus muscles, but demonstrates a greater fatigue resistance than the EDL. Unlike the other muscles, inherent properties of the FDB muscle make it amenable to multiple in vitro- and in vivo-based microscopy methods. Due to its anatomical location, the FDB can be used in cardiotoxin-induced muscle injury protocols and is amenable to electroporation of cDNA with a high degree of efficiency allowing for an effective means of genetic manipulation. Using a novel approach, we also demonstrate methods for assessing mitochondrial respiration in the FDB, which are comparable to the commonly used gastrocnemius muscle. As proof of principle, short-term overexpression of Pgc1α in the FDB increased mitochondrial respiration rates. Conclusion The results highlight the experimental flexibility afforded the investigator by using the FDB muscle to assess mechanisms that regulate skeletal muscle function

    Application of the mini-roundabout as a method improving safety and calming traffic on case of the city of Chorzow

    No full text
    Minironda w warunkach polskich. Doświadczenia chorzowskie w stosowaniu mini rond. Minirondo jako skuteczny środek uspokojenia ruchu i poprawy bezpieczeństwa. Eksperyment chorzowski – malowane mini rondo.The mini-roundabouts in Polish conditions. Chorzow experiences in the use of mini-roundabouts. The mini-roundabout as an effective mean for calming road traffic and improving traffic safety. Chorzów experiment – market mini-roundabout

    Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States

    No full text
    Ketone bodies (KBs), comprising β-hydroxybutyrate, acetoacetate and acetone, are a set of fuel molecules serving as an alternative energy source to glucose. KBs are mainly produced by the liver from fatty acids during periods of fasting, and prolonged or intense physical activity. In diabetes, mainly type-1, ketoacidosis is the pathological response to glucose malabsorption. Endogenous production of ketone bodies is promoted by consumption of a ketogenic diet (KD), a diet virtually devoid of carbohydrates. Despite its recently widespread use, the systemic impact of KD is only partially understood, and ranges from physiologically beneficial outcomes in particular circumstances to potentially harmful effects. Here, we firstly review ketone body metabolism and molecular signaling, to then link the understanding of ketone bodies' biochemistry to controversies regarding their putative or proven medical benefits. We overview the physiological consequences of ketone bodies' consumption, focusing on (i) KB-induced histone post-translational modifications, particularly β-hydroxybutyrylation and acetylation, which appears to be the core epigenetic mechanisms of activity of β-hydroxybutyrate to modulate inflammation; (ii) inflammatory responses to a KD; (iii) proven benefits of the KD in the context of neuronal disease and cancer; and (iv) consequences of the KD's application on cardiovascular health and on physical performance

    Silencing Lysine-Specific Histone Demethylase 1 (LSD1) Causes Increased HP1-Positive Chromatin, Stimulation of DNA Repair Processes, and Dysregulation of Proliferation by Chk1 Phosphorylation in Human Endothelial Cells.

    Get PDF
    : The methylation of histone lysine residues modifies chromatin conformation and regulates the expression of genes implicated in cell metabolism. Lysine-specific demethylase 1 (LSD1) is a flavin-dependent monoamine oxidase that can demethylate mono- and dimethylated histone lysines 4 and 9 (H3K4 and H3K9). The removal of methyl groups from the lysine residues of histone and non-histone proteins was found to be an important regulatory factor of cell proliferation. However, its role has not been fully elucidated. In this study, we assessed LSD1-mediated cell cycle progression using a human endothelial cell model. The short hairpin RNA knockdown of LSD1 inhibits the G2/M phase of cell cycle progression by checkpoint kinase 1 (Chk1) phosphorylation (S137). We observed elevated DNA damage, which was consistent with the increased detection of double-strand breaks as well as purines and pyrimidines oxidation, which accompanied the activation of ATR/ATRIP signaling by H2AXS139 phosphorylation. The irreversible pharmacological inhibition of LSD1 by 2-phenylcyclopropylamine (2-PCPA) inactivated its enzymatic activity, causing significant changes in heterochromatin and euchromatin conformation assessed by chromatin assembly factor 1 subunit A (CAF1A) and heterochromatin protein 1 isoform α and γ (HP1α/γ) immunofluorescence analysis. We conclude that the knockdown of LSD1 in endothelial cells leads to increased HP1-positive chromatin, the stimulation of DNA repair processes, and the dysregulation of proliferation machinery

    Methods to monitor ROS production by fluorescence microscopy and fluorometry.

    No full text
    Mitochondria are considered one of the main sources of reactive oxygen species (ROS). The overgeneration of ROS can evoke an intracellular state of oxidative stress, leading to permanent cell damage. Thus, the intracellular accumulation of ROS may not only disrupt the functions of specific tissues and organs but also lead to the premature death of the entire organism. Less severe increases in ROS levels may lead to the nonlethal oxidation of fundamental cellular components, such as proteins, phospholipids, and DNA, hence exerting a mutagenic effect that promotes oncogenesis and tumor progression. Here, we describe the use of chemical probes for the rapid detection of ROS in intact and permeabilized adherent cells by fluorescence microscopy and fluorometry. Moreover, after discussing the limitations described in the literature for the fluorescent probes presented herein, we recommend methods to assess the production of specific ROS in various fields of investigation, including the study of oncometabolism

    Prominent action of butyrate over beta-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule

    No full text
    Butyrate and R-beta-hydroxybutyrate are two related short chain fatty acids naturally found in mammals. Butyrate, produced by enteric butyric bacteria, is present at millimolar concentrations in the gastrointestinal tract and at lower levels in blood; R-beta-hydroxybutyrate, the main ketone body, produced by the liver during fasting can reach millimolar concentrations in the circulation. Both molecules have been shown to be histone deacetylase (HDAC) inhibitors, and their administration has been associated to an improved metabolic profile and better cellular oxidative status, with butyrate inducing PGC1alpha and fatty acid oxidation and R-beta-hydroxybutyrate upregulating oxidative stress resistance factors FOXO3A and MT2 in mouse kidney. Because of the chemical and functional similarity between the two molecules, we compared here their impact on multiple cell types, evaluating i) histone acetylation and hydroxybutyrylation levels by immunoblotting, ii) transcriptional regulation of metabolic and inflammatory genes by quantitative PCR and iii) cytokine secretion profiles using proteome profiling array analysis. We confirm that butyrate is a strong HDAC inhibitor, a characteristic we could not identify in R-beta-hydroxybutyrate in vivo nor in vitro. Butyrate had an extensive impact on gene transcription in rat myotubes, upregulating PGC1alpha, CPT1b, mitochondrial sirtuins (SIRT3-5), and the mitochondrial anti-oxidative genes SOD2 and catalase. In endothelial cells, butyrate suppressed gene expression and LPS-induced secretion of several pro-inflammatory genes, while R-beta-hydroxybutyrate acted as a slightly pro-inflammatory molecule. Our observations indicate that butyrate induces transcriptional changes to a higher extent than R-beta-hydroxybutyrate in rat myotubes and endothelial cells, in keep with its HDAC inhibitory activity. Also, in contrast with previous reports, R-beta-hydroxybutyrate, while inducing histone beta-hydroxybutyrylation, did not display a readily detectable HDAC inhibitor activity and exerted a slight pro-inflammatory action on endothelial cells

    Pharmacological inhibition of arginine and lysine methyltransferases induces nuclear abnormalities and suppresses angiogenesis in human endothelial cells

    No full text
    International audiencePosttranslational modifications of histone tails can alter chromatin structure and regulate gene transcription. While recent studies implicate the lysine/arginine protein methyltransferases in the regulation of genes for endothelial metabolism, the role of AMI-1 and AMI-5 compounds in angiogenesis remains unknown. Here, we show that global inhibition of arginine and lysine histone methyltransferases (HMTs) by AMI-5 induced an angiostatic profile in human microvascular endothelial cells and human umbilical vein endothelial cells. Based on FACS analysis, we found that inhibition of HMTs significantly affects proliferation of endothelial cells, by suppressing cell cycle progression in the G0/G1 phase. Immunofluorescent studies of the endothelial cells replication pattern by 5-ethynyl-2'-deoxyuridine incorporation disclosed that AMI-5, and the arginine methyltransferase inhibitor AMI-1, induced heterochromatin formation and a number of nuclear abnormalities, such as formation of micronuclei (MNs) and nucleoplasmic bridges (NPBs), which are markers of chromosomal instability. In addition to the modification of the cell cycle machinery in response to AMIs treatment, also endothelial cells migration and capillary-like tube formation processes were significantly inhibited, implicating a stimulatory role of HMTs in angiogenesis

    Isolation of plasma membrane-associated membranes from rat liver.

    No full text
    Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types
    corecore