37 research outputs found

    The evolution of crystalline ordering for ligand-ornamented zinc oxide nanoparticles

    Get PDF
    Recent total scattering experiments have opened up the possibility to study nanoparticle formation in situ and to observe the structural transformation from precursor clusters to adult particles. Organic ligand molecules interact with precursors of metal oxide nanoparticles, yet their influence onto the evolution of crystallinity during particle formation has not been addressed in detail; nor have in situ total scattering experiments ventured into the field of low-concentration, room-temperature syntheses in organic solvents to date. In this report, we follow the crystallization of ZnO nanoparticles in ethanol in the presence of different organic ligands. Low coordinated zinc precursor clusters rapidly polymerize upon base addition to particles of ca. 1 nm in diameter. In situ SAXS experiments reveal that the overall particle size increases to 2 to 4 nm with advancing reaction time. Complementary in situ PDF experiments show smaller crystalline domain sizes, which are only one third to half as large as the particle diameter. The ZnO particles thus feature a crystalline core surrounded by a disordered shell. Both, the core and the shell diameter are influenced by the different surface-bound organic ligands, which prevent an immediate relaxation to fully crystalline particles. A slow crystallization takes place in solution. We assume a dynamic equilibrium of the ligand and solvent molecules at the particle surface, which enables gradual bond restructuring. With suitably adjusted synthesis conditions, in our case by a continuous base addition, we show how to bypass the disordered intermediates, allowing the spontaneous nucleation of fully crystalline nanoparticles

    Design optimization of fiber amplifiers exposed to high gamma-radiation doses

    No full text
    Fiber lasers entered numerous applications due to their high efficiency and superior stability. Er-doped fiber lasers emitting around 1550 nm optical wavelength are capable to produce hundreds of Watts [1] and Millijoule pulse energy [2,3]

    Bulk and grain boundary Li-diffusion in dense LiMn2O4 pellets by means of isotope exchange and ToF-SIMS analysis

    No full text
    Lithium diffusion in LiMn2O4 pellets is studied by means of isotope exchange and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). A 6Li-enriched film deposited by Pulsed Laser Deposition (PLD) on a dense LiMn2O4 pellet with natural abundance of lithium isotopes is used to study the tracer diffusion of lithium. The measured profiles are analyzed by numerical models describing the 6Li tracer diffusion from the film into the pellet. Experiments in the Harrison type B regime of diffusion kinetics allow for the distinction and simultaneous determination of bulk and grain boundary diffusion coefficients. Changing the experimental conditions to reach Harrison type A behavior yields effective diffusion coefficients for lithium tracer diffusion in LiMn2O4. Activation energies for bulk and grain boundary diffusion were obtained from experiments at different temperatures. Our values are critically compared to previous studies

    The evolution of crystalline ordering for ligand-ornamented zinc oxide nanoparticles

    No full text
    Recent total scattering experiments have opened up the possibility to study nanoparticle formation in situ and to observe the structural transformation from precursor clusters to adult particles. Organic ligand molecules interact with precursors of metal oxide nanoparticles, yet their influence onto the evolution of crystallinity during particle formation has not been addressed in detail; nor have in situ total scattering experiments ventured into the field of low-concentration, room-temperature syntheses in organic solvents to date. In this report, we follow the crystallization of ZnO nanoparticles in ethanol in the presence of different organic ligands. Low coordinated zinc precursor clusters rapidly polymerize upon base addition to particles of ca. 1 nm in diameter. In situ SAXS experiments reveal that the overall particle size increases to 2 to 4 nm with advancing reaction time. Complementary in situ PDF experiments show smaller crystalline domain sizes, which are only one third to half as large as the particle diameter. The ZnO particles thus feature a crystalline core surrounded by a disordered shell. Both, the core and the shell diameter are influenced by the different surface-bound organic ligands, which prevent an immediate relaxation to fully crystalline particles. A slow crystallization takes place in solution. We assume a dynamic equilibrium of the ligand and solvent molecules at the particle surface, which enables gradual bond restructuring. With suitably adjusted synthesis conditions, in our case by a continuous base addition, we show how to bypass the disordered intermediates, allowing the spontaneous nucleation of fully crystalline nanoparticles
    corecore