28 research outputs found

    Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching

    Get PDF
    Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms

    Wild-Type Phosphoribosylpyrophosphate Synthase (PRS) from Mycobacterium tuberculosis: A Bacterial Class II PRS?

    Get PDF
    The 5-phospho-α-D-ribose 1-diphosphate (PRPP) metabolite plays essential roles in several biosynthetic pathways, including histidine, tryptophan, nucleotides, and, in mycobacteria, cell wall precursors. PRPP is synthesized from α-D-ribose 5-phosphate (R5P) and ATP by the Mycobacterium tuberculosis prsA gene product, phosphoribosylpyrophosphate synthase (MtPRS). Here, we report amplification, cloning, expression and purification of wild-type MtPRS. Glutaraldehyde cross-linking results suggest that MtPRS predominates as a hexamer, presenting varied oligomeric states due to distinct ligand binding. MtPRS activity measurements were carried out by a novel coupled continuous spectrophotometric assay. MtPRS enzyme activity could be detected in the absence of Pi. ADP, GDP and UMP inhibit MtPRS activity. Steady-state kinetics results indicate that MtPRS has broad substrate specificity, being able to accept ATP, GTP, CTP, and UTP as diphosphoryl group donors. Fluorescence spectroscopy data suggest that the enzyme mechanism for purine diphosphoryl donors follows a random order of substrate addition, and for pyrimidine diphosphoryl donors follows an ordered mechanism of substrate addition in which R5P binds first to free enzyme. An ordered mechanism for product dissociation is followed by MtPRS, in which PRPP is the first product to be released followed by the nucleoside monophosphate products to yield free enzyme for the next round of catalysis. The broad specificity for diphosphoryl group donors and detection of enzyme activity in the absence of Pi would suggest that MtPRS belongs to Class II PRS proteins. On the other hand, the hexameric quaternary structure and allosteric ADP inhibition would place MtPRS in Class I PRSs. Further data are needed to classify MtPRS as belonging to a particular family of PRS proteins. The data here presented should help augment our understanding of MtPRS mode of action. Current efforts are toward experimental structure determination of MtPRS to provide a solid foundation for the rational design of specific inhibitors of this enzyme

    Identification of a Catalytic Nucleophile-Activating Network in the endo-α-N-Acetylgalactosaminidase of Family GH101

    No full text
    Bifidobacterium longum endo-α-N-acetylgalactosaminidase (GH101), EngBF, is highly specific toward the mucin Core 1 glycan, Galβ1-3GalNAc. Apart from the side chains involved in the retaining mechanism of EngBF, Asp-682 is important for the activity. In the crystal structures of both EngBF and EngSP (from Streptococcus pneumoniae), we identified a conserved water molecule in proximity to Asp-682 and the homologue residue in EngSP. The water molecule also coordinates the catalytic nucleophile and three other residues conserved in GH101 enzymes; in EngBF, these residues are His-685, His-718, and Asn-720. With casein-glycomacropeptide as the substrate, the importance of Asp-682 was confirmed by the lack of a detectable activity for the D682N enzyme. The enzyme variants, H685A, H718A, H685Q, and H718Q, all displayed only a modestly reduction in kcat of up to 15 fold for the H718A variant. However, the double-substituted variants, H685A/H718A and H685Q/H718Q, had a greatly reduced kcat value by about 200 fold compared to that of wild-type EngBF. With the synthetic substrate, Galβ(1-3)GalNAcα1-para-nitrophenol, kcat of the double-substituted variants was only up to 30-fold reduced and was found to increase with pH. Compared to the pre-steady-state kinetics of wild-type EngBF, a burst of about the size of the enzyme concentration was absent with the double-substituted EngBF variants, indicating that the nucleophilic attack had become at least as slow as the hydrolysis of the enzyme intermediate. Together, the results indicate that not only Asp-682 but also the entire conserved network of His-685, His-718, and what we suggest is a catalytic water molecule is important in the activation of the catalytic nucleophile.This work was supported by the Danish Dairy Research Foundation, the Villum Foundation, and the Independent Research Fund Denmark (9041-00126B) to MW. The work has been carried out using CSUC resources (RC).Peer reviewe

    Engineering Bifidobacterium longum Endo-α-N-acetylgalactosaminidase for Neu5Acα2-3Galβ1-3GalNAc reactivity on Fetuin

    No full text
    Endo-α-N-acetylgalactosaminidase from Bifidobacterium longum (EngBF) belongs to the glycoside hydrolase family GH101 and has a strict preference towards the mucin type glycan, Galβ1-3GalNAc, which is O-linked to serine or threonine residues on glycopeptides and -proteins. While other enzymes of the GH101 family exhibit a wider substrate spectrum, no GH101 member has until recently been reported to process the α2-3 sialidated mucin glycan, Neu5Acα2-3Galβ1-3GalNAc. However, work published by others (ACS Chem Biol 2021, 16, 2004–2015) during the preparation of the present manuscript demonstrated that the enzymes from several bacteria are able to hydrolyze this glycan from the fluorophore, methylumbelliferyl. Based on molecular docking using the EngBF homolog, EngSP from Streptococcus pneumoniae, substitution of active site amino acid residues with the potential to allow for accommodation of Neu5Acα2-3Galβ1-3GalNAc were identified. Based on this analysis, the mutant EngBF variants W750A, Q894A, K1199A, E1294A and D1295A were prepared and tested, for activity towards the Neu5Acα2-3Galβ1-3GalNAc O-linked glycan present on bovine fetuin. Among the mutant EngBF variants listed above, only E1294A was shown to release Neu5Acα2-3Galβ1-3GalNAc from fetuin, which subsequently was also demonstrated for the substitutions: E1294 M, E1294H and E1294K. In addition, the kcat/KM of the EngBF variants for cleavage of the Neu5Acα2-3Galβ1-3GalNAc glycan increased between 5 and 70 times from pH 4.5 to pH 6.0
    corecore