336 research outputs found

    Exact bond percolation thresholds in two dimensions

    Full text link
    Recent work in percolation has led to exact solutions for the site and bond critical thresholds of many new lattices. Here we show how these results can be extended to other classes of graphs, significantly increasing the number and variety of solved problems. Any graph that can be decomposed into a certain arrangement of triangles, which we call self-dual, gives a class of lattices whose percolation thresholds can be found exactly by a recently introduced triangle-triangle transformation. We use this method to generalize Wierman's solution of the bow-tie lattice to yield several new solutions. We also give another example of a self-dual arrangement of triangles that leads to a further class of solvable problems. There are certainly many more such classes.Comment: Accepted for publication in J. Phys

    Rigorous confidence intervals for critical probabilities

    Full text link
    We use the method of Balister, Bollobas and Walters to give rigorous 99.9999% confidence intervals for the critical probabilities for site and bond percolation on the 11 Archimedean lattices. In our computer calculations, the emphasis is on simplicity and ease of verification, rather than obtaining the best possible results. Nevertheless, we obtain intervals of width at most 0.0005 in all cases

    Predictions of bond percolation thresholds for the kagom\'e and Archimedean (3,122)(3,12^2) lattices

    Full text link
    Here we show how the recent exact determination of the bond percolation threshold for the martini lattice can be used to provide approximations to the unsolved kagom\'e and (3,12^2) lattices. We present two different methods, one of which provides an approximation to the inhomogeneous kagom\'e and (3,12^2) bond problems, and the other gives estimates of pcp_c for the homogeneous kagom\'e (0.5244088...) and (3,12^2) (0.7404212...) problems that respectively agree with numerical results to five and six significant figures.Comment: 4 pages, 5 figure

    Exact Site Percolation Thresholds Using the Site-to-Bond and Star-Triangle Transformations

    Full text link
    I construct a two-dimensional lattice on which the inhomogeneous site percolation threshold is exactly calculable and use this result to find two more lattices on which the site thresholds can be determined. The primary lattice studied here, the ``martini lattice'', is a hexagonal lattice with every second site transformed into a triangle. The site threshold of this lattice is found to be 0.764826...0.764826..., while the others have 0.618034...0.618034... and 1/21/\sqrt{2}. This last solution suggests a possible approach to establishing the bound for the hexagonal site threshold, pc<1/2p_c<1/\sqrt{2}. To derive these results, I solve a correlated bond problem on the hexagonal lattice by use of the star-triangle transformation and then, by a particular choice of correlations, solve the site problem on the martini lattice.Comment: 12 pages, 10 figures. Submitted to Physical Review

    Random Cluster Models on the Triangular Lattice

    Full text link
    We study percolation and the random cluster model on the triangular lattice with 3-body interactions. Starting with percolation, we generalize the star--triangle transformation: We introduce a new parameter (the 3-body term) and identify configurations on the triangles solely by their connectivity. In this new setup, necessary and sufficient conditions are found for positive correlations and this is used to establish regions of percolation and non-percolation. Next we apply this set of ideas to the q>1q>1 random cluster model: We derive duality relations for the suitable random cluster measures, prove necessary and sufficient conditions for them to have positive correlations, and finally prove some rigorous theorems concerning phase transitions.Comment: 24 pages, 1 figur

    The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices

    Full text link
    We give a conditional derivation of the inhomogeneous critical percolation manifold of the bow-tie lattice with five different probabilities, a problem that does not appear at first to fall into any known solvable class. Although our argument is mathematically rigorous only on a region of the manifold, we conjecture that the formula is correct over its entire domain, and we provide a non-rigorous argument for this that employs the negative probability regime of the triangular lattice critical surface. We discuss how the rigorous portion of our result substantially broadens the range of lattices in the solvable class to include certain inhomogeneous and asymmetric bow-tie lattices, and that, if it could be put on a firm foundation, the negative probability portion of our method would extend this class to many further systems, including F Y Wu’s checkerboard formula for the square lattice. We conclude by showing that this latter problem can in fact be proved using a recent result of Grimmett and Manolescu for isoradial graphs, lending strong evidence in favor of our other conjectured results. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98528/1/1751-8121_45_49_494005.pd

    A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment

    Get PDF
    The KATRIN experiment aims to determine the neutrino mass scale with a sensitivity of 200 meV/c^2 (90% C.L.) by a precision measurement of the shape of the tritium β\beta-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. To determine the transmission properties of the KATRIN main spectrometer, a mono-energetic and angular-selective electron source has been developed. In preparation for the second commissioning phase of the main spectrometer, a measurement phase was carried out at the KATRIN monitor spectrometer where the device was operated in a MAC-E filter setup for testing. The results of these measurements are compared with simulations using the particle-tracking software "Kassiopeia", which was developed in the KATRIN collaboration over recent years.Comment: 19 pages, 16 figures, submitted to European Physical Journal

    Critical surfaces for general inhomogeneous bond percolation problems

    Full text link
    We present a method of general applicability for finding exact or accurate approximations to bond percolation thresholds for a wide class of lattices. To every lattice we sytematically associate a polynomial, the root of which in [0,1][0,1] is the conjectured critical point. The method makes the correct prediction for every exactly solved problem, and comparison with numerical results shows that it is very close, but not exact, for many others. We focus primarily on the Archimedean lattices, in which all vertices are equivalent, but this restriction is not crucial. Some results we find are kagome: pc=0.524430...p_c=0.524430..., (3,122):pc=0.740423...(3,12^2): p_c=0.740423..., (33,42):pc=0.419615...(3^3,4^2): p_c=0.419615..., (3,4,6,4):pc=0.524821...(3,4,6,4):p_c=0.524821..., (4,82):pc=0.676835...(4,8^2):p_c=0.676835..., (32,4,3,4)(3^2,4,3,4): pc=0.414120...p_c=0.414120... . The results are generally within 10−510^{-5} of numerical estimates. For the inhomogeneous checkerboard and bowtie lattices, errors in the formulas (if they are not exact) are less than 10−610^{-6}.Comment: Submitted to J. Stat. Mec
    • …
    corecore