Recent work in percolation has led to exact solutions for the site and bond
critical thresholds of many new lattices. Here we show how these results can be
extended to other classes of graphs, significantly increasing the number and
variety of solved problems. Any graph that can be decomposed into a certain
arrangement of triangles, which we call self-dual, gives a class of lattices
whose percolation thresholds can be found exactly by a recently introduced
triangle-triangle transformation. We use this method to generalize Wierman's
solution of the bow-tie lattice to yield several new solutions. We also give
another example of a self-dual arrangement of triangles that leads to a further
class of solvable problems. There are certainly many more such classes.Comment: Accepted for publication in J. Phys