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Aggregate modeling of multi-processing

workstations ∗

A.A.A. Kock, L.F.P. Etman, J.E. Rooda,

I.J.B.F. Adan, M. van Vuuren, A. Wierman †

August 12, 2008

Abstract

In this paper an aggregate model for manufacturing systems consisting
of flow lines with finite buffers and parallel servers is proposed. The
proposed model is a multi-server station with process times depending
on the work in process (WIP). An algorithm is developed to measure the
WIP-dependent process times directly from industrial data such as arrival
times at and departure times from the manufacturing system. Simulation
results show that the aggregate model accurately predicts the mean flow
time.

Keywords: Discrete-event simulation, Effective process time, Performance
analysis, Queueing approximation

1 Introduction

In semiconductor manufacturing, there is a trend of proliferation of integrated
processing [Wood, 1996]. These integrated processing tools allow multiple wafers
of one or more lots to be processed simultaneously. Multiple processes or pro-
cess steps are contained within a single tool. The logistics inside such integrated
tools are often flow line alike (lot cascading). For example, integrated lithogra-
phy cells allow wafers of up to four lots to be pipelined through a sequence of
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several processes, including resist coat, expose, and develop. In addition, vac-
uum processors are integrated around standardized frames that include wafer
handlers and loadlocks. Other examples of integrated processing tools are wet-
benches (lots traverse through a sequence of chemical baths), metal deposit
tools (several surface treatment and metal-alloy deposition processes are com-
bined in a single tool) and ion-implant (ion implant consists of two sequential
steps: loading and ion emanation onto the wafers).

Due to the sequence of processes that is carried out in an integrated pro-
cessing tool, the mean flow time ϕ and throughput δ in the tool increases as the
work in process, WIP, increases. The presence of such tools on the factory floor
complicates the performance analysis.

For the performance analysis of semiconductor manufacturing there are two
categories of models in common use: (discrete-event) simulation models and
analytical models. Simulation models allow the inclusion of various details of
the processes. However, every detail requires data to be collected and adds to
the computational expense of the simulation model. Arisha and Young [2004];
Nayani and Mollaghasemi [1998]; Pierce and Drevna [1992] develop simulation
models of integrated processing tools, with explicit modeling of, e.g., machine
downs, repairs, operating rules, setups, maintenance, operator availability and
operator skill. The cluster tool model described in Pierce and Drevna uses over
1100 variables and parameters and 500 distributions.

Analytical models, on the other hand, are usually computationally cheap to
evaluate and require little input data, such as the mean and variance of process
times. However, they adhere to restrictive assumptions, such as, e.g., phase-
type distributed process times [Asmussen, 2003]. Shanthikumar et al. [2007]
noted that lot cascading in a tool should be well modeled to obtain accurate
flow time estimations. An appealing approach to estimate the performance of
complex manufacturing systems is to represent (part of) the system by a so-
called flow equivalent server (FES) [Norton, 1926]: an exponential single-server
station with service rates depending on the WIP. Indeed, under restrictive as-
sumptions, the aggregate system behavior can be described exactly by a FES,
i.e., it is possible to replace part of a queueing network (representing the manu-
facturing system) by a single-server station without affecting the behavior of the
rest of the network [Boucherie, 1998; Chandy et al., 1975]. Exact FES models
were originally derived for balanced, closed queueing networks with exponential
process times. Later, extensions were proposed for special networks with Cox-
ian process times and constant process times [Rhee, 2006; Stewart and Zeiszler,
1980; Thomasian and Nadji, 1981]. However, the assumptions required for an
(exact) FES model are too prohibitive to be of practical use in the present
context of integrated tools.

In this paper, we propose an aggregate model that, similar to the FES,
replaces the integrated tool by a single- or multi-server station with WIP-
dependent processing times. However, unlike the FES, we do not make a priori
assumptions regarding process time distributions. Key to our approach is that
the process time distributions can be obtained directly from arrival and depar-
ture events from the factory floor. The advantage is clear: we do not need
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to quantify all shop-floor realities individually. To estimate the parameters of
the process time distributions we adopt the “Effective Process Time” (EPT)
paradigm [Hopp and Spearman, 1996, 2001; Jacobs et al., 2001, 2003].

The system, studied in this paper, is an open network with finite buffers
and no feedback; in particular, the configuration is flow-line alike, motivated
by the lot cascading tools used in semiconductor manufacturing, which is com-
mon for the logistics inside integrated tools. The accuracy of the mean flow
time predicted by the aggregate model is investigated for several configurations,
ranging from a flow line with twelve sequential servers to a station with twelve
parallel servers. Simulation results convincingly demonstrate that the proposed
aggregate model yields accurate predictions. Hence, the conclusion is that the
modeling framework of multi-server stations with WIP-dependent process times
combined with the EPT paradigm provides an effective and powerful tool for
the performance evaluation of multi-processing tools.

The outline of this paper is as follows: we first present an overview of the
effective process time paradigm in Section 2. In Section 3, we explain the main
concept of the aggregate model. We introduce the algorithm to translate arrival
and departure data into EPT-realizations in Section 3.3. The algorithm is tested
on a set of examples in Section 4. Finally, in Section 5 we present our main
findings and the discussion.

2 Previous work using the EPT paradigm

The phrase effective process time was originally introduced by Hopp and Spearman
[1996, 2001]. They define the EPT as ‘the time seen by a lot at a workstation
from a logistical point of view’. The EPT aggregates the raw processing time
and all shop-floor realities and disturbances on processing at a workstation into
a single process time distribution. The inclusion of multiple phenomena into
a single distribution is referred to as aggregation. Hopp and Spearman give
explicit expressions to compute the mean EPT and the EPT coefficient of vari-
ation from the raw processing time and the various outages, either preemptive
(setup-alike) or non-preemptive (breakdown-alike). They use the EPT mean
and variance in closed form approximations for G/G/m queues to explain and
estimate the mean flow time performance.

In many practical cases, outages may not all be quantifiable. Jacobs et al.
[2001, 2003] show that the EPT can be measured without the need to identify
and quantify all contributing shop-floor realities. For workstations with ample
buffer space and that process a single lot at a time, they present an algorithm
to calculate EPT-realizations directly from lot arrival and departure events.
The obtained empirical distribution can then be used to fit a parameterized
EPT-distribution.

This idea can be generalized into an EPT-based modeling framework, as
explained by Kock et al. [2008a]. Event collection, EPT calculation, distribution
fitting and aggregate modeling are presented as an integrated framework. The
EPT is not only used as a performance metric quantifying capacity (mean) and
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Figure 1: Tandem flow line with finite buffers; circles indicate process
steps, triangles buffers, a lot arrivals and d lot departures

variability (variance), but also to build simulation or analytical models fed by
parameter values obtained from empirical EPT-distributions.

EPT-algorithms to compute EPT-realizations from arrival and departure
events were proposed by Jacobs et al. [2006, 2001, 2003]; Kock et al. [2008a,b];
Vijfvinkel et al. [2007], for infinitely buffered ‘single lot’ workstations, finitely
buffered ‘single lot’ workstations, assembly workstations and batch worksta-
tions. These references focus on discrete-event simulation models. Analytical
models may be used as an alternative. Closed form expressions for (mean)
performance measures of G/G/m queues can be used for infinitely buffered
multi-server workstations. For finitely buffered flow lines and assembly lines,
queueing approximations as discussed by Dallery and Gershwin [1992]; Vuuren
[2007]; Vuuren et al. [2005] may be used.

3 An aggregate multi-server station

In the present paper, we consider flow lines consisting of multi-server stations
with finite buffers. Specifically, we assume that, on arrival, lots are put into an
infinite buffer to wait until processing starts, and once in process, lots do not
recirculate. An example is visualized in Figure 1.

3.1 Model concept

The idea is to aggregate the entire flow line into a multi-server station with
FIFO dispatching and WIP-dependent process times; see Figure 2. The number
of servers, denoted by m, is an important user-defined parameter. Initially, one
may expect that the choice of m will be related to the structure of the flow
line, i.e., the “degree of parallel processing”; this relation will be investigated in
Section 4. The process time of a lot depends on the WIP present in the system
just before the start of processing. The dependence on the WIP reflects that,
in the real system, the mean flow time and throughput depend on the number
of lots in the system. Clearly, the real system is not a m-server station; hence,
the challenge is to subtract the required WIP-dependent process times from
the arrival and departure events in the real system. This is explained in the
following two sections.
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Figure 2: Structure of the proposed aggregate model

3.2 EPT measurement

The input to the calculation of EPT-realizations consists of a chronological list
of events obtained from the shop-floor. Each event is defined by the lot id,
the event type ev (arrival in the infinite buffer of the flow line, denoted ‘A’,
or departure from the flow line, denoted ‘D’) and the time of occurrence of
the event τ . Then, by acting as if the event list has been produced by an m-
server station, we are able to retrieve the EPT-realizations. Since the process
times in the multi-server station are WIP-dependent, we introduce bucket b for
each WIP-level b, 1 6 b < ∞. An EPT-realization is assigned to bucket b if b
lots are present at the start of the EPT-realization. Thus, each bucket collects
EPT-realizations corresponding to a certain WIP, and at the end of the event
list, provides an empirical EPT-distribution. Since the EPT-distributions are
expected to converge as b tends to infinity, we can limit the number of buckets
by N , say, where bucket N contains all process times registered with a WIP
≥ N .

Most likely, the real system and the m-server station do not perfectly match.
Hence, it may happen that, when lot id departs at time τ , it has not yet started
processing in the m-server station; this is readily seen to happen when a G/G/2
is aggregated into a G/G/1, since overtaking takes place in the first, but not
in the second system. This inconsistency will be solved as follows. We pick
one of the lots in process at time τ , say lot jd that started processing at time
t when the WIP was b; the pick rule(s) will be specified in the next section.
Then we “interchange” the departure times of lot id and jd; so lot jd leaves at
time τ , having received an EPT of τ − t time units for WIP b, after which lot
id immediately enters service and remains so until the “old” departure time of
lot jd.

In the next section we describe the algorithm to calculate EPT-realizations
in more detail.

3.3 EPT-algorithm

The EPT-algorithm is depicted in Figure 3. It uses the following variables: n
represents the current WIP, list rs stores (id, τ, n) containing the start times
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of the lots that are in process (according to the m-server station). List ws
contains the id of each lot in the system that has not yet started processing
(again, according to the m-server station). The algorithm uses the functions
append, get, remove, head, tail and find operating on the lists rs and ws.
Function append adds an element to the end of the list, get reads the element
with lot id from the list. Function remove removes the element with id from the
list. Function head takes the first element in the list and function tail takes
all elements except the first. Finally, find picks one specific element from the
list according to a user-defined rule, to be discussed later.

n:= 0; rs:=[]; ws := []
loop

read id, ev, τ
if ev = ‘A’ then

n := n + 1
if n 6 m then (a1)

rs:= append(rs, (id, τ, n))
elseif n > m then (a2)

ws:= append(ws, id)
endif

elseif ev = ‘D’ then
n := n − 1
if n < m then (d1)

(t, b):= get(rs, id)
rs:= remove(rs, id)

elseif n > m and id ∈ rs then (d2)
(t, b):= get(rs, id)
rs:= remove(rs, id)
jd:= head(ws); ws:= tail(ws)
rs:= append(rs, (jd, τ, n))

elseif n > m and id /∈ rs then (d3)
(jd, t, b):= find(rs,rule)
rs:= remove(rs, jd)
rs:= append(rs, (jd, τ, n))
ws:= remove(ws, id)

endif
write τ − t, b

endif
endloop

Figure 3: EPT-Algorithm

The EPT-algorithm distinguishes five cases:

(a1) A lot arrives when n < m lots are present. Capacity is available: lot start
with id, time τ and WIP-level n is added to rs.
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(a2) A lot arrives when n > m lots are present. All m servers are busy, thus
the lot is stored in the buffer ws.

(d1) A lot departs, n < m lots remain behind. Bucket b and start time t of the
departing lot are retrieved from rs, after which the lot is removed.

(d2) A lot departs, n > m lots remain behind and id of the departing lot is
known in rs: bucket b and start time t of the lot are retrieved from rs
after which id is removed from rs; the first lot waiting in ws is added as
new lot start to rs with time τ and WIP-level n.

(d3) A lot departs, n > m lots remain behind, and id of the departing lot is
not known in rs. So lot id departs, while it has not started processing
according to the m-server station. Then, using function find, we select
an alternative lot that has started already, jd. We compute the EPT-
realization using the start time of jd. Then, lot jd is restarted and lot id
is removed from buffer ws.

Note that in (d3) lot id immediately departs and lot jd (re)starts service, instead
of the other way around; the reason is that, although the lot identity is not
relevant for the EPT-realization, we should be able to connect the right lot to
the departure of lot jd after time τ .

For function find in case (d3), we propose three rules: 1) random lot, 2) lot
with the shortest elapsed process time, 3) lot with the longest elapsed process
time. The rationale behind rule 2 is that the lot might be a fast mover, and
therefore, we assign the smallest possible process time; the rationale behind
rule 3 is opposite. Clearly, for m = 1, the pick rules are identical, since then
there is only one lot to pick. The impact of the choice of the pick rule on the
performance predictions will be investigated in Section 4.

In case (d1), (d2) and (d3), the EPT-realization is printed as τ − t with
bucket b.

3.4 Gantt-chart examples

Figure 4 shows Gantt-charts for two manufacturing systems; Figure 4(a) cor-
responds to a system without overtaking, and Figure 4(b) to a system with
overtaking. The bottom part of the Gantt-charts shows the EPT-realizations
computed by the EPT-algorithm, with m = N = 2; EPTs are labeled t(b),
where t is the duration of the EPT and b the bucket. Note that case (d3) is
invoked twice in Figure 4(b), but not in Figure 4(a).

4 Model validation

By means of discrete-event simulation we will test the aggregate model in four
scenarios depicted in Figure 5; all simulation results are generated using the
χ − 0.8 software [Hofkamp and Rooda, 2002].
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Figure 4: Example Gantt-charts, (a) without overtaking, (b) with over-
taking, using rule 2

In each example, the arrival process is Poisson with rate δ and the process
times are gamma-distributed with mean 1.0 and squared coefficient of variation
c2 ∈ {0.1, 1.0, 2.0}. Mean flow time predictions in the real system are based on
simulation runs of 2.000.000 lots. The utilization of the system is defined as the
ratio of the throughput δ and the maximum attainable throughput δmax, which
is determined in one simulation run of 100.000 lots using unlimited supply of
lots. For each scenario EPT-realizations are measured using the EPT-algorithm
(Figure 3) in a simulation run of 2.000.000 lots at a given utilization level, the
so-called training level. For scenario I, the training level is δ/δmax ∈ {0.6, 0.9}
while for scenarios II, III and IV, we take δ/δmax = 0.8. On the empirical
EPT-distributions, we fit Gamma distributions matching the mean te and coef-
ficient of variation c2

e
. Then mean flow times are predicted by the multi-server

aggregate station with WIP-dependent Gamma-distributed process times at uti-
lization levels 0.3 6 δ/δmax 6 0.95; at each utilization level the mean flow time
prediction is based on five runs of 10.000.000 lots.

4.1 Scenario I: Twelve sequential single server stations

The system consists of a flow line of twelve sequential single-server stations,
see Figure 5(a). Each station has one buffer space. For this system, we have
δmax = {0.875, 0.553, 0.440} [lots/hour] for c2 = {0.1, 1.0, 2.0}.

In Figures 6 we present EPT-realizations measured for δ/δmax = 0.9, c2 = 1.0
and m = 1. The x-axis in Figure 6(a) is the WIP (or bucket), whereas the y-
z planes represent histograms of the EPT-realizations. Clearly, the bulk of
the EPT-realizations is in buckets ranging from 1 to 40, with a peak near 20.
The empirical probability distribution function (PDF) is plotted in Figure 6(b).
From bucket 30, say, onwards, the distributions do not significantly change;
buckets 40 or higher hardly contain any realization explaining the noisy behav-
ior. Hence, it makes sense to aggregate all realizations in buckets ≥ 30 into
bucket N = 30.

Figure 7 plots the mean EPT te and squared coefficient of variation (SCV)
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(a) Scenario 1: 12 sequen-
tial single-server work-
stations

1 1

(b) Scenario 2: 3 worksta-
tions with 4 servers

1 1

1 1

1 1

1 1

(c) Scenario 3: 4 parallel
lines

(d) Scenario 4: 12 parallel
servers

Figure 5: Test scenarios for algorithm of Figure 3
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c2

e
as a function of the WIP-level. Clearly, these plots depend on the squared

coefficient of variation c2 of the processing times in the real system.
The monotonic behavior of te as a function of WIP-level is as expected: the

higher the WIP in the flow line, the faster lots will leave the line. Also the
behavior of c2

e
may be explained: initially, at low WIP, c2

e
tends to increase, due

to the (random) distribution of the WIP in the flow line, and eventually, c2

e
will

converge to a value close to c2. We would like to point out that monotonicity
properties of te and c2

e
, as observed in Figure 7, may be exploited in an analytical

model to accomplish, e.g., state space reduction.
Figures 8(a) and 8(b) show, for various values of m, mean flow time predic-

tions of the aggregate model trained at utilization level δ/δmax = 0.6 and 0.9,
respectively; the EPT-realizations are obtained by employing pick rule 1. The
figure shows that, for m = 1, the best prediction is obtained at the training
level (as expected). For m = 1, mean flow time predictions are also listed in
Tables 1 and 2. From the results we can conclude that mean flow times at low
utilization levels are more accurately predicted by the aggregate model trained
at δ/δmax = 0.6 than the one trained at δ/δmax = 0.9, whereas the reverse is
true for high utilizations. Further, the predictions seem to be more accurate for
smaller values of c2.

A naive approach is to approximate the flow line by an M/G/1 queue; in
the present context, this means that the flow line is aggregated into a 1-server
station with N = 1, i.e., all EPT-realizations are assigned to one bucket. This
approach would produce poor approximations, since it completely fails to take
into account the increased efficiency due to the lot cascading for larger WIP-
levels.

Table 1: Scenario I: Mean flow time prediction (m = 1, trained at δ/δmax =
0.6)

c2 = 0.1 c2 = 1.0 c2 = 2.0
δ

δmax
Approx.Real Approx.Real Approx.Real

0.3 12.02 12.85 14.11 14.67 15.40 15.77
0.5 13.39 13.79 17.16 17.18 19.44 19.29
0.6 14.49 14.49 18.86 18.85 21.62 21.62
0.7 16.23 15.51 20.94 21.06 24.19 24.69
0.85 21.75 18.58 25.22 27.26 29.19 33.54
0.95 69.62 27.07 30.36 48.94 33.38 67.10

The aggregate 1-server station may be slightly refined by exploiting the
following observation. There are two possibilities to start processing at WIP-
level 1: either a lot arrives in an empty flow line, or the previous departure
left behind a single lot. The mean EPT of a lot entering an empty flow line is
12, whereas the mean EPT of a single lot left behind is clearly less (in fact, 6
according to simulation). Thus, splitting bucket 1 in two buckets may improve
the predictions. Figure 9 shows mean flow time predictions for c2 = 1.0 with
training level δ/δmax = 0.6. Since the prediction only slightly improves for low
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Figure 6: Scenario I: EPT-realizations (δ/δmax = 0.9, c2 = 1.0 and m = 1)
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(b) Trained at δ/δmax = 0.9

Figure 8: Scenario I: flow time prediction (c2 = 1.0, rule 1)
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Table 2: Scenario I: Mean flow time eϕ estimation for m = 1 if the model
is trained at δ/δmax = 0.9

c2 = 0.1 c2 = 1.0 c2 = 2.0
δ

δmax
Approx.Real Approx.Real Approx.Real

0.3 11.35 12.85 13.66 14.67 15.34 15.77
0.6 13.10 14.49 19.04 18.85 22.82 21.62
0.85 18.13 18.58 28.22 27.26 35.32 33.54
0.9 21.08 20.95 32.60 32.45 41.26 41.18
0.92 22.46 22.55 35.27 36.35 44.84 47.10
0.95 26.14 27.07 40.91 48.94 52.42 67.10

δ/δmax, we will not further pursue the option of splitting of buckets.
Next we investigate sensitivity with respect to the number of EPT measure-

ments. Figure 10 shows that, if the number of EPT-realizations is drastically
reduced from 2.000.000 to 15.000 lots, the mean flow time predictions are still
accurate. This suggests that it is not necessary to collect an “enormous” amount
of data, which is convenient from a practical point of view.

Finally we consider an unbalanced flow line: the processing speed of server
6 is is slowed down by a factor 1.5, and thus it becomes the bottleneck station.
Mean flow time predictions for utilization levels from 0.3 until 0.95 are depicted
in Figure 11. For m = 1, the predictions are even slightly more accurate than
in the balanced case.

4.2 Scenario II: Three stations, four parallel servers each

The first station in the three station flow line of Figure 5(b) has an infinite buffer,
the other two have one buffer place. The maximum obtainable throughput is
δmax = {3.666, 3.174, 2.989} [lots/hour] for c2 = {0.1, 1.0, 2.0}. The training
level is δ/δmax = 0.8.

In Figures 12 we show te and c2

e
as a function of the WIP-level, for m = 1

and m = 4. As expected, the shape of the te and c2

e
curves depend on the choice

of m; in particular, the limiting value of te for m = 4 is (roughly) four times the
limiting value for m = 1.

Figure 13 presents mean flow time predictions in the range of 0.3 6 δ/δmax 6

0.95. It shows that the predictions for m = 12 are accurate at low utilizations,
but underestimate the mean flow time at high utilizations; a possible explanation
is that the 12-server station allows for more overtaking than in the real system.
The predictions for m = 1 and m = 4 are very accurate in the utilization range
0.6 6 δ/δmax 6 0.9. In this case, one might initially guess that m = 4 would
be the best choice, since it properly reflects the “degree of parallel processing”;
but, surprisingly, the predictions for m = 1 are of the same quality.

Table 3 gives additional results for m = 4, demonstrating the effect of the
pick rule. The estimates for the three rules are fairly close, but seem to be
ordered: rule 3 gives the lowest prediction, rule 2 the highest and rule 1 is in
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Figure 10: Scenario I: Flow time prediction, 15.000 lots (c2 = 1.0, rule 1,
trained at δ/δmax = 0.9)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

TP−ratio

F
lo

w
 ti

m
e

 

 

m = 1
m = 4
m = 12
Real system

Figure 11: Scenario I: Flow time prediction, unbalance 1.5 (c2 = 1.0, rule
1, trained at δ/δmax = 0.9)
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between. This ordering is also reflected in the c2

e
-curves in Figure 14, which

seems to be a direct consequence of the pick rule.

Table 3: Scenario II: Mean flow time prediction (m = 4, trained at δ/δmax =
0.8)

c2 = 0.1 c2 = 2.0
δ

δmax
rule 1 rule 2 rule 3 Real rule 1 rule 2 rule 3 Real

0.3 2.90 2.90 2.89 3.02 2.50 2.85 2.29 3.03
0.6 3.08 3.08 3.08 3.18 3.12 3.36 3.00 3.33
0.7 3.23 3.23 3.23 3.32 3.51 3.73 3.38 3.62
0.8 3.50 3.50 3.50 3.58 4.12 4.39 3.95 4.18
0.9 4.14 4.15 4.13 4.29 5.46 5.92 5.09 5.68
0.95 4.91 4.94 4.89 5.63 7.28 7.84 6.57 8.04

4.3 Scenario III: Four parallel lines of three sequential,

single server stations

We now consider a system of four parallel single-server flow lines, with three
stations per line, see Figure 5(c). Each station has one buffer space, except for
the first stations in the lines sharing an infinite buffer. For this system, the
maximum obtainable throughput is δmax = {3.659, 2.691, 2.319} [lots/hour] for
c2 = {0.1, 1.0, 2.0}. The training level is δ/δmax = 0.8.

Figure 15 shows the mean flow time prediction for 0.3 6 δ/δmax 6 0.95;
additional results for m = 4 and each of the pick rules are displayed in Table
4. The results for scenario III are comparable to ones for scenario II. Note,
however, at high utilizations the prediction errors in scenario III are larger than
in scenario II (cf. Figure 15 and Figure 13). Apparently, in scenario II, the
aggregate model more accurately captures interaction between lots.

Table 4: Scenario III: Mean flow time prediction (m = 4, trained at
δ/δmax = 0.8)

c2 = 0.1 c2 = 2.0
δ

δmax
rule 1 rule 2 rule 3 Real rule 1 rule 2 rule 3Real

0.3 3.58 3.60 3.55 3.84 4.20 4.67 3.97 5.23
0.6 4.14 4.15 4.13 4.27 5.57 5.83 5.46 5.96
0.7 4.37 4.38 4.36 4.42 6.11 6.34 6.00 6.28
0.8 4.72 4.74 4.72 4.70 6.83 7.11 6.66 6.92
0.9 5.51 5.54 5.49 5.44 8.16 8.66 7.81 8.86
0.95 6.62 6.66 6.59 6.84 9.60 10.39 9.09 12.75

Finally, we note that the picture of mean flow times, obtained by slowing
down one of the four lines by a factor 1.5, is similar to Figure 11.
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Figure 12: Scenario II: Effective process times per bucket (δ/δmax = 0.8,
c2 = 1.0, rule 1)
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Figure 13: Scenario II: flow time prediction (c2 = 1.0, rule 1, trained at
δ/δmax = 0.8)
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Figure 14: Scenario II: Effective process times per pick rule (δ/δmax = 0.8,
c2 = 2.0, m = 2)
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4.4 Scenario IV: Workstation with twelve parallel servers

To conclude, we consider a workstation with twelve parallel servers, see Fig-
ure 5(d). For this system, the maximum obtainable throughput is δmax =
{12, 12, 12} [lots/hour] for c2 = {0.1, 1.0, 2.0}. The training level is again set at
δ/δmax = 0.8.

Figure 16 shows te and c2

e
as a function of the WIP-level for m = 12. Clearly,

the measurements in buckets smaller than 6 or larger than 15 experience noise
(due to few observations): one would expect flat curves here.

Figure 17 shows mean flow time predictions for 0.3 6 δ/δmax 6 0.95. The fig-
ure also depicts the standard M/G/12 approximation, i.e., m = 12 and N = 1.
Obviously, now this “naive” approximation is very accurate, and the M/G/12
with “WIP-dependent” process times is almost as accurate. Further, the pre-
dictions for m = 1 are less accurate at low utilization and the ones for m = 20
are less accurate at high utilization.

In Scenario II we already touched the issue of selecting the pick rule; see
Table 3, demonstrating that the effect of the pick rule on the mean flow time
prediction is limited. However, this choice may be relevant in situations where
the rule is often invoked. For example, this is expected to happen if the 12-
server station is aggregated as a 2-server station; the predicted mean flow time,
as a function of δ/δmax, is depicted in Figure 18, and indeed, the accuracy now
strongly depends on the pick rule. In all examples, however, it appeared that
rule 1, i.e., the random rule, performed well and thus, this rule seems to be
a safe choice. Moreover, the numerical experiments in this paper convincingly
show that the aggregate model with m = 1 always produces accurate mean flow
time predictions, and in this case, the pick rule is irrelevant.

Finally, we consider an unbalanced case by slowing down the processing
speed of six of the twelve servers by a factor 1.5, while keeping c2 = 1.0 for all
processing times. Evaluating mean flow time predictions for m ∈ {1, 2, 4, 12}
over the range 0.3 6 δ/δmax 6 0.95 leads to similar results as shown in Figure
17. However, in this case, the standard M/G/12 approximation is inaccurate:
it sometimes overestimates the mean flow time by more than 10%, while the
M/G/12 approximation with WIP-dependent process times remains accurate.

5 Conclusions and discussion

In this paper, we propose an aggregate m-server model with WIP-dependent
process times. The process times are computed from lot arrivals at and lot de-
partures from the system that is aggregated. An advantage is that these events
can be directly measured from the factory floor. An algorithm is presented to
calculate the WIP-dependent effective process time realizations.

The accuracy of the mean flow time prediction has been investigated in four
scenarios, ranging from a flow line to a single workstation with parallel servers.
The results show that predictions are accurate, but the quality depends on the
choice of m, and to a lesser degree, on the pick rule; surprisingly, the choice m =
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Figure 15: Scenario III: flow time prediction (c2 = 1.0, rule 1, trained at
δ/δmax = 0.8)
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Figure 16: Scenario IV: Effective process times per bucket (δ/δmax = 0.8)
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Figure 17: Scenario IV: Flow time prediction (c2 = 1.0, rule 1, trained at
δ/δmax = 0.8)
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Figure 18: Scenario IV: Flow time prediction (c2 = 1.0, m = 2, measured at
δ/δmax = 0.8)
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1 appears to be good across all scenarios. The feature of WIP-dependent process
times appears to be crucial: the quality of mean flow time predictions by multi-
server stations with WIP-independent process times is usually poor. The overall
conclusion is that the aggregate 1-server station always performs well (and, in
this case, the choice of the pick rule is not relevant). The simulation study in
this paper is restricted to flow lines consisting of multi-server workstations with
finite buffers; we expect, however, that the scope of this approach goes (far)
beyond this class of manufacturing systems.

The aggregate model has been developed keeping integrated processing equip-
ment in mind. A follow-up paper by Veeger et al. [2008] demonstrates how the
present methodology can be applied to workstations with integrated processing
tools in a semiconductor manufacturing environment, where commonly used
G/G/m approximations perform unsatisfactorily.

Acknowledgments

This research is supported by the Technology Foundation STW, applied science
division of NWO and the technology programme of the Dutch Ministry of Eco-
nomic Affairs. The authors would furthermore like to thank Erjen Lefeber and
Casper Veeger of the Eindhoven University of Technology.

References

A. Arisha and P. Young. Intelligent simulation-based lot scheduling of pho-
tolithography toolsets in a wafer fabrication facility. In 2004 Winter Simula-
tion Conference, pages 1935–1942, 2004.

S. Asmussen. Applied Probability and Queues. Springer, New York, 2nd edition,
2003.

R.J. Boucherie. Norton’s equivalent for queueing networks comprised of quasire-
versible components linked by state-dependent routing. Performance Evalu-
ation, 32:83–99, 1998.

K.M. Chandy, U. Herzog, and L. Woo. Parametric analysis of queuing networks.
IBM Journal of Research and Development, 19:36–42, 1975.

Y. Dallery and S.B. Gershwin. Manufacturing flow line systems: a review of
models and analytical results. Queueing Systems: Theory and Applications,
12:3–94, 1992.

A.T. Hofkamp and J.E. Rooda. χ Reference manual. Systems
Engineering Group, Eindhoven University of Technology, 11 2002.
URL:http://se.wtb.tue.nl/.

W.J. Hopp and M.L. Spearman. Factory physics: foundations of manufacturing
management. London: Irwin McGraw-Hill, 1st edition, 1996.

21



W.J. Hopp and M.L. Spearman. Factory physics: foundations of manufacturing
management. London: Irwin McGraw-Hill, 2nd edition, 2001. ISBN 0-256-
24795-1.

J.H. Jacobs, P.P. van Bakel, L.F.P. Etman, and J.E. Rooda. Quantifying vari-
ability of batching equipment using effective process times. IEEE Transac-
tions on Semiconductor Manufacturing, 19(2):269–275, 2006.

J.H. Jacobs, L.F.P. Etman, E.J.J. van Campen, and J.E. Rooda. Quantify-
ing operational time variability: the missing parameter for cycle time reduc-
tion. In 2001 IEEE/SEMI Advanced semiconductor manufacturing confer-
ence, pages 1–10, 2001.

J.H. Jacobs, L.F.P. Etman, E.J.J. van Campen, and J.E. Rooda. Character-
ization of operational time variability using effective process time. IEEE
Transactions on Semiconductor Manufacturing, 16:511–520, 2003.

A.A.A. Kock, L.F.P. Etman, and J.E. Rooda. Effective process time for multi-
server flowlines with finite buffers. IIE Transactions, 40(3):177–186, 2008a.

A.A.A. Kock, F.J.J. Wullems, L.F.P. Etman, I.J.B.F. Adan, F. Nijsse, and
J.E. Rooda. Performance evaluation and lumped parameter modelling of
single server flowlines subject to blocking: an effective process time approach.
Computers and Industrial Engineering, 54(4):866–878, 2008b.

M. Nayani and M. Mollaghasemi. Validation and verification of the simulation
model of a photolithography process in semiconductor manufacturing. In 1998
Winter Simulation Conference, pages 1017–1022, 1998.

E.L. Norton. Design of finite networks for uniform frequency characteristic.
taken from http://www.ece.rice.edu/˜dhj/norton/ (last visited 11-12-2007),
1926.

N.G. Pierce and M.J. Drevna. Development of generic simulation models to
evaluate wafer fabrication cluster tools. In Advanced Semiconductor Manufac-
turing Conference and Workshop, ASMC, 1992, pages 874–878. IEEE/SEMI,
1992.

Y. Rhee. Some notes on the reduction of network dimensionality in nested open
queueing networks. European Journal of Operational Research, 174:124–131,
2006.

J.G. Shanthikumar, S. Ding, and M.T. Zhang. Queueing theory for semiconduc-
tor manufacturing systems: a survey and open problems. IEEE Transactions
on Automation Science and Engineering, 4(4):513–522, 2007.

W.J. Stewart and G.A. Zeiszler. On the existence of composite flow equivalent
markovian servers. ACM Sigmetrics Performance Evaluation Review, 9(2):
105–116, 1980.

22



A. Thomasian and B. Nadji. Aggregation of stations in queueing network models
of multiprogrammed computers. ACM Sigmetrics Performance Evaluation
Review, 10(3):86–104, 1981.

C.P.L. Veeger, L.F.P. Etman, J. van Herk, and J.E. Rooda. Generating cy-
cle time-throughput curves using ept-based aggregate modeling. In 2008
IEEE/SEMI Advanced Semiconductor Manufacturing Concerence (ASMC),
Boston, 2008.

M. Vijfvinkel, A.A.A. Kock, L.F.P. Etman, M. van Vuuren, and J.E. Rooda.
Performance measurement and prediction of finitely buffered asynchronous
assembly lines: an effective process time approach. submitted, 2007.

M. van Vuuren. Performance Analysis of Manufacturing Systems: Queueing
Approximations and Algorithms. PhD thesis, Eindhoven University of Tech-
nology, Department of Mathematics and Computer Science, 2007.

M. van Vuuren, I.J.B.F. Adan, and S.A.E. Resing-Sassen. Performance analysis
of multi-server tandem queues with finite buffers and blocking. OR Spektrum,
27:315–339, 2005.

S.C. Wood. Simple performance models for integrated processing tools. IEEE
Transactions on Semiconductor Manufacturing, 9:320–328, 1996.

23


	Introduction
	Previous work using the EPT paradigm
	An aggregate multi-server station
	Model concept
	EPT measurement
	EPT-algorithm
	Gantt-chart examples

	Model validation
	Scenario I: Twelve sequential single server stations
	Scenario II: Three stations, four parallel servers each
	Scenario III: Four parallel lines of three sequential, single server stations
	Scenario IV: Workstation with twelve parallel servers

	Conclusions and discussion

