538 research outputs found
Adiabatic loading of a Bose-Einstein condensate in a 3D optical lattice
We experimentally investigate the adiabatic loading of a Bose-Einstein
condensate into an optical lattice potential. The generation of excitations
during the ramp is detected by a corresponding decrease in the visibility of
the interference pattern observed after free expansion of the cloud. We focus
on the superfluid regime, where we show that the limiting time scale is related
to the redistribution of atoms across the lattice by single-particle tunneling
Entanglement interferometry for precision measurement of atomic scattering properties
We report on a two-particle matter wave interferometer realized with pairs of
trapped 87Rb atoms. Each pair of atoms is confined at a single site of an
optical lattice potential. The interferometer is realized by first creating a
coherent spin-mixture of the two atoms and then tuning the inter-state
scattering length via a Feshbach resonance. The selective change of the
inter-state scattering length leads to an entanglement dynamics of the
two-particle state that can be detected in a Ramsey interference experiment.
This entanglement dynamics is employed for a precision measurement of atomic
interaction parameters. Furthermore, the interferometer allows to separate
lattice sites with one or two atoms in a non-destructive way.Comment: 4 pages, 5 figure
Upscaling of bottom-generated turbulence in large-scale 3D models for sediment transport in estuaries and coastal zones
Currently used 3D numerical sediment transport models still fail to make good quantitative predictions. To a great extent, this can be attributed to the inadequate description of physical processes which occur at the subgrid scale level. From flume experiments it is known that particle-turbulence interactions near the bed significantly change the effective roughness experienced by the overlying water column. This results in different transport rates if not accounted for.From a theoretical perspective, bed load transport, sheet flow and fluid mud flow are all occurrences of supersaturated suspension flow in the inner near-bed layer comprising the viscous sublayer and the transient layer. Its thickness increases with sediment load, since particle-particle interactions (four-way coupling effects) consume considerable amounts of the available stream power. In order to know how much energy is left over to compute the transport capacity of the outer, fully-developed layer, it is necessary to quantify the energy budget in the inner layer.This is a difficult task. Every modelling approach has its draw-backs and limitations. Lagrangean particle tracking is hopeless, since the required number of particles to approach field conditions is much too high, and the volumes occupied by the particles cannot be neglected. Grain sizes are non-uniform in nature and concentrations near the bed very high, making it very difficult to give an accurate description of the momentum exchange between fluid and solid phase, which accounts for particle collisions. Therefore, in view of large-scale applications, a one-fluid approach is adopted. This implies that the momentum equation is solved for the suspension, together with a turbulence closure model and the sediment mass balance.Since the thickness of the supersaturated inner layer mostly is very small relative to the water depth and the vertical discretization in large scale applications, it is not possible to resolve this layer with a traditional low-Reynolds model approach, which requires a very fine grid. A new approach is proposed, where a modified Prandtl-mixing length (PML) model is used for the bed layer, and a new low-Reynolds model is applied in the outer layers. In this way it is possible to obtain a correct behaviour for tidal oscillating flow in estuaries, where low-Re effects enter high in the water column during slack water.The correction factor for the PML eddy viscosity and the damping functions for the low-Re k-epsilon turbulence model are constructed based on theoretical constraints, DNS and LES generated data, as well as experimental flume data. In parallel, LES and improved two-layer low-Re models are developed to simulate flow over rough bottoms without and with sediment, in order to generate data very close to the bed surface, where no measurements can be made. These additional data are used to help interpret experimental flume data, which always show relatively high experimental errors, and to extend the new damping functions for the cases with bottom roughness and suspended sediment.Preliminary results of the new coarse grid RANS model for open-channel flow with various roughness conditions without and with suspended sediment will be shown, compared to LES results for flow over a wavy bottom, low-Reynolds RANS results over rough bottom and experimental flume data
Spin squeezing of high-spin, spatially extended quantum fields
Investigations of spin squeezing in ensembles of quantum particles have been
limited primarily to a subspace of spin fluctuations and a single spatial mode
in high-spin and spatially extended ensembles. Here, we show that a wider range
of spin-squeezing is attainable in ensembles of high-spin atoms, characterized
by sub-quantum-limited fluctuations in several independent planes of
spin-fluctuation observables. Further, considering the quantum dynamics of an
ferromagnetic spinor Bose-Einstein condensate, we demonstrate
theoretically that a high degree of spin squeezing is attained in multiple
spatial modes of a spatially extended quantum field, and that such squeezing
can be extracted from spatially resolved measurements of magnetization and
nematicity, i.e.\ the vector and quadrupole magnetic moments, of the quantum
gas. Taking into account several experimental limitations, we predict that the
variance of the atomic magnetization and nematicity may be reduced as far as 20
dB below the standard quantum limits.Comment: 18 pages, 5 figure
Coherent collisional spin dynamics in optical lattices
We report on the observation of coherent, purely collisionally driven spin
dynamics of neutral atoms in an optical lattice. For high lattice depths, atom
pairs confined to the same lattice site show weakly damped Rabi-type
oscillations between two-particle Zeeman states of equal magnetization, induced
by spin changing collisions. This paves the way towards the efficient creation
of robust entangled atom pairs in an optical lattice. Moreover, measurement of
the oscillation frequency allows for precise determination of the spin-changing
collisional coupling strengths, which are directly related to fundamental
scattering lengths describing interatomic collisions at ultracold temperatures.Comment: revised version; 4 pages, 5 figure
Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms
We report on precision measurements of spin-dependent interaction-strengths
in the 87Rb spin-1 and spin-2 hyperfine ground states. Our method is based on
the recent observation of coherence in the collisionally driven spin-dynamics
of ultracold atom pairs trapped in optical lattices. Analysis of the Rabi-type
oscillations between two spin states of an atom pair allows a direct
determination of the coupling parameters in the interaction hamiltonian. We
deduce differences in scattering lengths from our data that can directly be
compared to theoretical predictions in order to test interatomic potentials.
Our measurements agree with the predictions within 20%. The knowledge of these
coupling parameters allows one to determine the nature of the magnetic ground
state. Our data imply a ferromagnetic ground state for 87Rb in the f=1
manifold, in agreement with earlier experiments performed without the optical
lattice. For 87Rb in the f=2 manifold the data points towards an
antiferromagnetic ground state, however our error bars do not exclude a
possible cyclic phase.Comment: 11 pages, 5 figure
Quantum Walk in Position Space with Single Optically Trapped Atoms
The quantum walk is the quantum analogue of the well-known random walk, which
forms the basis for models and applications in many realms of science. Its
properties are markedly different from the classical counterpart and might lead
to extensive applications in quantum information science. In our experiment, we
implemented a quantum walk on the line with single neutral atoms by
deterministically delocalizing them over the sites of a one-dimensional
spin-dependent optical lattice. With the use of site-resolved fluorescence
imaging, the final wave function is characterized by local quantum state
tomography, and its spatial coherence is demonstrated. Our system allows the
observation of the quantum-to-classical transition and paves the way for
applications, such as quantum cellular automata.Comment: 7 pages, 4 figure
Recommended from our members
Impact of polysialylated CD56 on natural killer cell cytotoxicity
Moebius J, Widera D, Schmitz J, Kaltschmidt C, Pichaczek C. Impact of polysialylated CD56 on natural killer cell cytotoxicity. BMC IMMUNOLOGY. 2007;8(1):13
- …