109 research outputs found
Effect of sequence length, sequence frequency, and data acquisition rate on the performance of a hadamard transform time-of-flight mass spectrometer
AbstractVarious factors influencing the performance of a Hadamard transform time-of-flight mass spectrometer (HT-TOFMS) have been investigated. Using a nitrogen corona discharge to produce an ion stream of N2+, N3+, and N4+, it is found for spectra containing only N4+ that the signal-to-noise ratio (SNR) closely approaches the value calculated from the ion background by assuming that the ion background follows a Poisson distribution. In contrast, for a more intense beam containing N2+, N3+, and N4+, the SNR is less than its theoretical value because of the appearance of discrete spikes in the mass spectrum caused by deviations in the actual modulation sequence from the ideal one. These spikes can be reduced, however, by decreasing the modulation voltage. Under these optimized conditions, the pseudo-random sequence length is varied to understand how it alters SNR, mass resolution, and scan speed. When the length of the pseudo-random sequence is doubled, the SNR increases by 2 while the time necessary to record a mass spectrum also doubles. Mass resolution can be varied between 500 and 1200 at m/z = 609 as the sequence length, modulation speed (10 MHz, 25 MHz), and acquisition rate (up to 50 MHz) are changed. Scan speeds of 6000 passes per s can be obtained using a sequence containing 4095 elements modulated at 25 MHz. The capability to tailor the HT-TOFMS to increase the scan speed and resolution with a constant 50% duty cycle makes the technique extremely appealing as a mass analyzer for measuring rapid changes in the composition of an ion stream
Prediction of the Caspian Sea level using ECMWF seasonal forecasts and reanalysis
This article is made available through the Brunel Open Access Publishing Fund. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.The hydrological budget of the Caspian Sea (CS) is investigated using the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAi) and seasonal forecast (FCST) data with the aim of predicting the Caspian Sea Level (CSL) some months ahead. Precipitation and evaporation are used. After precipitation events over the Volga River, the discharge (Volga River discharge (VRD)) follows with delays, which are parameterized. The components of the water budget from ERAi and FCSTs are integrated to obtain time series of the CSL. Observations of the CSL and the VRD are used for comparison and tuning. The quality of ERAi data is sufficiently good to calculate the time variability of the CSL with a satisfactory accuracy. Already the storage of water within the Volga Basin allows forecasts of the CSL a few months ahead, and using the FCSTs of precipitation improves the CSL forecasts. The evaporation in the seasonal forecasts is deficient due to unrealistic sea surface temperatures over the CS. Impacts of different water budget terms on the CSL variability are shown by a variety of validation tools. The importance of precipitation anomalies over the catchment of the Volga River is confirmed, but also impacts from the two southern rivers (Sefidrud and Kura River) and the evaporation over the CS become obvious for some periods. When pushing the FCSTs beyond the limits of the seasonal FCSTs to 1 year, considerable forecast skill can still be found. Validating only FCSTs by the present approach, which show the same trend as one based on a statistical method, significantly enhances the skill scores
Recommended from our members
How do I know if I’ve improved my continental scale flood early warning system?
Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value.
The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems
Spectral counting assessment of protein dynamic range in cerebrospinal fluid following depletion with plasma-designed immunoaffinity columns
<p>Abstract</p> <p>Background</p> <p>In cerebrospinal fluid (CSF), which is a rich source of biomarkers for neurological diseases, identification of biomarkers requires methods that allow reproducible detection of low abundance proteins. It is therefore crucial to decrease dynamic range and improve assessment of protein abundance.</p> <p>Results</p> <p>We applied LC-MS/MS to compare the performance of two CSF enrichment techniques that immunodeplete either albumin alone (IgYHSA) or 14 high-abundance proteins (IgY14). In order to estimate dynamic range of proteins identified, we measured protein abundance with APEX spectral counting method.</p> <p>Both immunodepletion methods improved the number of low-abundance proteins detected (3-fold for IgYHSA, 4-fold for IgY14). The 10 most abundant proteins following immunodepletion accounted for 41% (IgY14) and 46% (IgYHSA) of CSF protein content, whereas they accounted for 64% in non-depleted samples, thus demonstrating significant enrichment of low-abundance proteins. Defined proteomics experiment metrics showed overall good reproducibility of the two immunodepletion methods and MS analysis. Moreover, offline peptide fractionation in IgYHSA sample allowed a 4-fold increase of proteins identified (520 vs. 131 without fractionation), without hindering reproducibility.</p> <p>Conclusions</p> <p>The novelty of this study was to show the advantages and drawbacks of these methods side-to-side. Taking into account the improved detection and potential loss of non-target proteins following extensive immunodepletion, it is concluded that both depletion methods combined with spectral counting may be of interest before further fractionation, when searching for CSF biomarkers. According to the reliable identification and quantitation obtained with APEX algorithm, it may be considered as a cheap and quick alternative to study sample proteomic content.</p
Foot and ankle injuries during the Athens 2004 Olympic Games
<p>Abstract</p> <p>Background</p> <p>Major, rare and complex incidents can occur at any mass-gathering sporting event and team medical staff should be appropriately prepared for these. One such event, the Athens Olympic Games in 2004, presented a significant sporting and medical challenge. This study concerns an epidemiological analysis of foot and ankle injuries during the Games.</p> <p>Methods</p> <p>An observational, epidemiological survey was used to analyse injuries in all sport tournaments (men's and women's) over the period of the Games.</p> <p>Results</p> <p>A total of 624 injuries (525 soft tissue injuries and 99 bony injuries) were reported. The most frequent diagnoses were contusions, sprains, fractures, dislocations and lacerations. Significantly more injuries in male (58%) versus female athletes (42%) were recorded. The incidence, diagnosis and cause of injuries differed substantially between the team sports.</p> <p>Conclusion</p> <p>Our experience from the Athens Olympic Games will inform the development of public health surveillance systems for future Olympic Games, as well as other similar mass events.</p
Should cities hosting mass gatherings invest in public health surveillance and planning? Reflections from a decade of mass gatherings in Sydney, Australia
<p>Abstract</p> <p>Background</p> <p>Mass gatherings have been defined by the World Health Organisation as "events attended by a sufficient number of people to strain the planning and response resources of a community, state or nation". This paper explores the public health response to mass gatherings in Sydney, the factors that influenced the extent of deployment of resources and the utility of planning for mass gatherings as a preparedness exercise for other health emergencies.</p> <p>Discussion</p> <p>Not all mass gatherings of people require enhanced surveillance and additional response. The main drivers of extensive public health planning for mass gatherings reflect geographical spread, number of international visitors, event duration and political and religious considerations. In these instances, the implementation of a formal risk assessment prior to the event with ongoing daily review is important in identifying public health hazards.</p> <p>Developing and utilising event-specific surveillance to provide early-warning systems that address the specific risks identified through the risk assessment process are essential. The extent to which additional resources are required will vary and depend on the current level of surveillance infrastructure.</p> <p>Planning the public health response is the third step in preparing for mass gatherings. If the existing public health workforce has been regularly trained in emergency response procedures then far less effort and resources will be needed to prepare for each mass gathering event. The use of formal emergency management structures and co-location of surveillance and planning operational teams during events facilitates timely communication and action.</p> <p>Summary</p> <p>One-off mass gathering events can provide a catalyst for innovation and engagement and result in opportunities for ongoing public health planning, training and surveillance enhancements that outlasted each event.</p
Toward Global Drought Early Warning Capability - Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting
Drought has had a significant impact on civilization throughout history in terms of reductions in agricultural productivity, potable water supply, and economic activity, and in extreme cases this has led to famine. Every continent has semiarid areas, which are especially vulnerable to drought. The Intergovernmental Panel on Climate Change has noted that average annual river runoff and water availability are projected to decrease by 10 percent-13 percent over some dry and semiarid regions in mid and low latitudes, increasing the frequency, intensity, and duration of drought, along with its associated impacts. The sheer magnitude of the problem demands efforts to reduce vulnerability to drought by moving away from the reactive, crisis management approach of the past toward a more proactive, risk management approach that is centered on reducing vulnerability to drought as much as possible while providing early warning of evolving drought conditions and possible impacts. Many countries, unfortunately, do not have adequate resources to provide early warning, but require outside support to provide the necessary early warning information for risk management. Furthermore, in an interconnected world, the need for information on a global scale is crucial for understanding the prospect of declines in agricultural productivity and associated impacts on food prices, food security, and potential for civil conflict. This paper highlights the recent progress made toward a Global Drought Early Warning Monitoring Framework (GDEWF), an underlying partnership and framework, along with its Global Drought Early Warning System (GDEWS), which is its interoperable information system, and the organizations that have begun working together to make it a reality. The GDEWF aims to improve existing regional and national drought monitoring and forecasting capabilities by adding a global component, facilitating continental monitoring and forecasting (where lacking), and improving these tools at various scales, thereby increasing the capacity of national and regional institutions that lack drought early warning systems or complementing existing ones. A further goal is to improve coordination of information delivery for drought-related activities and relief efforts across the world. This is especially relevant for regions and nations with low capacity for drought early warning. To do this requires a global partnership that leverages the resources necessary and develops capabilities at the global level, such as global drought forecasting combined with early warning tools, global real-time monitoring, and harmonized methods to identify critical areas vulnerable to drought. Although the path to a fully functional GDEWS is challenging, multiple partners and organizations within the drought, forecasting, agricultural, and water-cycle communities are committed to working toward its success
TOWARD GLOBAL DROUGHT EARLY WARNING CAPABILITY: Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting
The need for a global drought early warning framework. Drought has had a significant impact on civilization throughout history in terms of reductions in agricultural productivity, potable water supply, and economic activity, and in extreme cases this has led to famine. Every continent has semiarid areas, which are especially vulnerable to drought. The Intergovernmental Panel on Climate Change has noted that average annual river runoff and water availability are projected to decrease by 10%–13% over some dry and semiarid regions in mid and low latitudes, increasing the frequency, intensity, and duration of drought, along with its associated impacts. The sheer magnitude of the problem demands efforts to reduce vulnerability to drought by moving away from the reactive, crisis management approach of the past toward a more proactive, risk management approach that is centered on reducing vulnerability to drought as much as possible while providing early warning of evolving drought conditions and possible impacts. Many countries, unfortunately, do not have adequate resources to provide early warning, but require outside support to provide the necessary early warning information for risk management. Furthermore, in an interconnected world, the need for information on a global scale is crucial for understanding the prospect of declines in agricultural productivity and associated impacts on food prices, food security, and potential for civil conflict
Diabetes mellitus in Egypt: glycaemic control and microvascular and neuropathic complications
We performed a cross-sectional, population-based survey of persons 20 years of age and older living in Cairo and surrounding rural villages. The purpose was to describe glycaemic control and the prevalence of microvascular and neuropathic complications among Egyptians with diagnosed diabetes, previously undiagnosed diabetes, impaired glucose tolerance, and normal glucose tolerance. A total of 6052 households were surveyed. The response rate was 76 % for the household survey and 72 % for the medical examination. Among people with previously diagnosed diabetes, mean haemoglobin A 1c was 9.0 %. Forty-two per cent had retinopathy, 21 % albuminuria, and 22 % neuropathy. Legal blindness was prevalent (5 %) but clinical nephropathy (7 %) and foot ulcers (1 %) were uncommon in persons with diagnosed diabetes. Among people with diagnosed diabetes, microvascular and neuropathic complications were associated with hyperglycaemia. Retinopathy was also associated with duration of diabetes; albuminuria with hypertension and hypercholesterolaemia; and neuropathy with age, female sex, and hypercholesterolaemia. Albuminuria was as common in people with previously undiagnosed diabetes (22 %) as those with diagnosed disease (21 %). Mean haemoglobin A 1c was lower (7.8 %) and retinopathy (16 %) and neuropathy (14 %) were less prevalent in people with previously undiagnosed disease. Ocular conditions, blindness, and neuropathy were prevalent in the non-diabetic population. The microvascular and neuropathic complications of diabetes are a major clinical and public health problem in Egypt. Copyright © 1998 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34940/1/696_ftp.pd
- …