109 research outputs found

    Correction of anaemia through the use of darbepoetin alfa improves chemotherapeutic outcome in a murine model of Lewis lung carcinoma

    Get PDF
    Darbepoetin alfa (Aranesp®, Amgen) is a novel erythropoiesis-stimulating protein with a serum half-life longer than recombinant human erythropoietin (Epo), used in the treatment of cancer-associated anaemia. Anaemia is known to adversely affect prognosis and response to treatment in cancer patients. Solid tumours contain regions of hypoxia due to poor vascular supply and cellular compaction. Although hypoxic stress usually results in cell death, hypoxia-resistant tumour cells are genetically unstable and often acquire a drug-resistant phenotype. Increasing tumour oxygenation and perfusion during treatment could have the doubly beneficial outcome of reducing the fraction of treatment-resistant cells, while increasing drug delivery to previously hypoxic tissue. In this study, we examined the effect of darbepoetin alfa on chemotherapy sensitivity and delivery in an in vivo model of Lewis lung carcinoma, shown here to express the Epo receptor (EpoR). We identified that weekly darbepoetin alfa treatment, commencing 10 days before chemotherapy, resulted in a significant reduction in tumour volume compared to chemotherapy alone. This was mediated by the prevention of anaemia, a reduction in tumour hypoxia and a concomitant increase in drug delivery. Darbepoetin alfa treatment alone did not modulate the growth of the EpoR-expressing tumour cells. This study identifies an important role for darbepoetin alfa in increasing the therapeutic index of chemotherapy

    Mechanical cleaning of graphene using in situ electron microscopy

    Get PDF
    Avoiding and removing surface contamination is a crucial task when handling specimens in any scientific experiment. This is especially true for two-dimensional materials such as graphene, which are extraordinarily affected by contamination due to their large surface area. While many efforts have been made to reduce and remove contamination from such surfaces, the issue is far from resolved. Here we report on an in situ mechanical cleaning method that enables the site-specific removal of contamination from both sides of two dimensional membranes down to atomic-scale cleanliness. Further, mechanisms of re-contamination are discussed, finding surface-diffusion to be the major factor for contamination in electron microscopy. Finally the targeted, electron-beam assisted synthesis of a nanocrystalline graphene layer by supplying a precursor molecule to cleaned areas is demonstrated

    Human recombinant erythropoietin (rEpo) has no effect on tumour growth or angiogenesis

    Get PDF
    Tumour hypoxia has been shown to increase mutation rate, angiogenesis, and metastatic potential, and decrease response to conventional therapeutics. Improved tumour oxygenation should translate into increased treatment response. Exogenous recombinant erythropoietin (rEpo) has been recently shown to increase tumour oxygenation in a mammary carcinoma model. The mechanism of this action is not yet understood completely. The presence of Epo and its receptor (EpoR) have been demonstrated on several normal and neoplastic tissues, including blood vessels and various solid tumours. In addition, rEpo has been shown in two recent prospective, randomized clinical trials to negatively impact treatment outcome. In this study, we attempt to characterize the direct effects of rEpo on tumour growth and angiogenesis in two separate rodent carcinomas. The effect of rEpo on R3230 rat mammary adenocarcinomas, CT-26 mouse colon carcinomas, HCT-116 human colon carcinomas, and FaDu human head and neck tumours, all of which express EpoR, was examined. There were no differences in tumour growth or proliferation (measured by Ki-67) between placebo-treated and rEpo-treated tumours. In the mammary window chamber, vascular length density (VLD) measurements in serial images of both placebo-treated and Epo-treated rats revealed no difference in angiogenesis between the Epo-treated tumours and placebo-treated tumours at any time point. These experiments are important because they suggest that the recent clinical detriment seen with the use of Epo is not due to its tumour growth effects or angiogenesis. These studies also suggest that further preclinical studies need to examine rEpo's direct tumour effects in efforts to improve the therapeutic benefits of Epo in solid tumour patients

    Erythropoiesis-stimulating agents in oncology: a study-level meta-analysis of survival and other safety outcomes

    Get PDF
    BACKGROUND: Cancer patients often develop the potentially debilitating condition of anaemia. Numerous controlled studies indicate that erythropoiesis-stimulating agents (ESAs) can raise haemoglobin levels and reduce transfusion requirements in anaemic cancer patients receiving chemotherapy. To evaluate recent safety concerns regarding ESAs, we carried out a meta-analysis of controlled ESA oncology trials to examine whether ESA use affects survival, disease progression and risk of venous-thromboembolic events

    Erythropoietin in the intensive care unit: beyond treatment of anemia

    Get PDF
    Erythropoietin (EPO) is the major hormone stimulating the production and differentiation of red blood cells. EPO is used widely for treating anemia of critical illness or anemia induced by chemotherapy. EPO at pharmacological doses is used in this setting to raise hemoglobin levels (by preventing the apoptosis of erythroid progenitor cells) and is designed to reduce patient exposure to allogenic blood through transfusions. Stroke, heart failure, and acute kidney injury are a frequently encountered clinical problem. Unfortunately, in the intensive care unit advances in supportive interventions have done little to reduce the high mortality associated with these conditions. Tissue protection with EPO at high, nonpharmacological doses after injury has been found in the brain, heart, and kidney of several animal models. It is now well known that EPO has anti-apoptotic effects in cells other than erythroid progenitor cells, which is considered to be independent of EPOs erythropoietic activities. This review article summarizes what is known in preclinical models of critical illness and discusses why this does not correlate with randomized, controlled clinical trials

    Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies

    Full text link

    A common epitope on human tumor necrosis factor alpha and the autoantigen 'S-antigen/arrestin' induces TNF-alpha production

    Get PDF
    A common epitope on S-antigen (arrestin), a potent autoantigen inducing experimental autoimmune uveoretinitis (EAU), and on human tumor necrosis factor alpha (hTNF alpha) was revealed using two monoclonal antibodies to S-antigen which inhibit EAU induction. The minimal common sequence for monoclonal antibody recognition is GVxLxD in the S-antigen/hTNF alpha amino acid sequences. Peptides containing this sequence motif exhibited monocyte activating capacity similar to the autocrine stimulatory capacity of hTNF alpha itself. In the S-antigen this activity was located from residue 40 to 50, corresponding to the peptide PVDGVVLVDPE (epitope S2). In hTNF alpha, the monocyte activating capacity correlated to residue 31 to 53, corresponding to the peptide RRANALLANGVELRDNQLVVPSE (peptide RRAN). The identified regions define common functional structures in the autoantigen and in the hTNF alpha molecule. The data suggest a regulatory function of this particular structure in TNF alpha expression and in autoimmunity

    Cytokine induction by immunomodulatory epitopes in S-antigen and tumor necrosis factor alpha

    Get PDF
    Common epitopes on S-antigen (arrestin), a potent autoantigen inducing experimental autoimmune uveoretinitis (EAU), and on human tumor necrosis factor alpha (hTNF alpha) are revealed with monoclonal antibodies (mAb) to S-antigen, which inhibit EAU induction. The minimal common sequence for mAb recognition is GVxLxD in the S-antigen/hTNF alpha amino acid (aa) sequences. Peptides containing this sequence motif exhibit monocyte activating capacity analogous to the autocrine stimulatory capacity of hTNF alpha itself. In S-antigen this activity is located at epitope S2 (aa residues 40 to 50), corresponding to the peptide PVDGVVLVDPE (peptide S2). In hTNF alpha the monocyte activating capacity correlates to aa residue 31 to 53, corresponding to the peptide RRANALLANGVELRDNQLVVPSE (peptide RRAN). Peptide S2 but not peptide RRAN is competing for mAbs S6H8 and S2D2 binding to S-antigen. Anti-idiotypic antibodies to S2D2 compete with peptide S2 but not peptide RRAN for binding to mAbs S2D2 and S6H8. In human retinal S-antigen epitope S2 is localized at the aa residues 44-54 and is cleaved in the human peptide 4 (aa 31-50). Competition experiments with peptide 4 (aa 31-50) and peptide 5 (aa 41-60) indicate that the C-terminal aa residues VDPD in the epitope S2 play an important role for internal image recognition of the anti-idiotypic antibodies. Peptide S2 and peptide RRAN define common functional structures in the autoantigen and hTNF alpha molecules. The data suggest regulatory functions of the peptides in cytokine expression, network regulation and in autoimmunity

    Effect of vanadate on renal tubular function in rats

    No full text
    corecore