16 research outputs found

    Female Gnathia marleyi (Isopoda: Gnathiidae) feeding on more susceptible fish hosts produce larger but not more offspring

    No full text
    The reproductive success of female Gnathia marleyi (Crustacea: Isopoda) was examined among individuals from eight species belonging to five families of common Caribbean reef fishes of St. John, US Virgin Islands that differ in susceptibility to G. marleyi infestation. Fish were placed in cages during times of peak gnathiid activity. Gnathiids were recovered from host fishes and reared to adulthood in the laboratory. Ovigerous females were then placed in individual containers until offspring were released. Measures of reproductive success used were the number of hatched zuphea 1 larvae that emerged from the brood pouch, "brood size," and the average total length of newly emerged zuphea larvae, "average z-length." Among the five host fish families tested, females that fed on the two families most susceptible to gnathiid infestation (Haemulidae and Lutjanidae) produced longer larvae than those feeding on the three less susceptible host families. However, there was no significant difference in the number of viable offspring produced. To our knowledge, this is the first study to examine the relationship between the source of the blood meal and any measure of reproductive success in female gnathiid isopods. These findings open the door to future research on potential differences in host blood quality and defense mechanisms that may cause variations in susceptibility to gnathiid among different host fishes

    Nocturnal migration reduces exposure to micropredation in a coral reef fish

    No full text
    Tropical Atlantic reef fishes in the family Haemulidae (grunts) remain quiescent on reefs during the day and migrate to seagrass beds or sand flats at night. Hypothesized advantages of such nocturnal migrations are increased food availability and/or decreased predation risk. Here, we tested predictions of an alternative hypothesis that nocturnal migrations of French grunt, Haemulon flavolineatum (Desmarest, 1823), reduce exposure to blood-feeding gnathiid isopods. The departure of grunts from the reef coincides with increasing gnathiid activity. In field experiments, subadult fish placed in cages and deployed on the reef at night harbored significantly more gnathiids than those placed in the seagrass habitat. However, this was not the case during the day when gnathiid activity in all habitats is low. In another experiment, the timing of return to the reef was determined to coincide with the postdawn decrease in gnathiid activity. Estimates of cumulative gnathiid exposure at two sites revealed that grunts remaining in reef habitat at night would experience an average of 3 and 44 times more gnathiids than if they spent the night in the seagrass bed, and could reach more than 300 gnathiids on a single fish. In a final field experiment, even recently-settled (<2 cm) juvenile grunts were infested by gnathiids, supporting previous laboratory experiments showing that a single third-stage gnathiid will infest and kill grunts of this size. Combined, these findings suggest that nocturnal feeding migrations of French grunts and ecologically similar fishes result in reduced exposure to blood-feeding gnathiid isopods

    Estimating the magnitude and sensitivity of energy fluxes for stickleback hosts and Schistocephalus solidus parasites using the metabolic theory of ecology

    No full text
    Abstract Parasites are ubiquitous, yet their effects on hosts are difficult to quantify and generalize across ecosystems. One promising metric of parasitic impact uses the metabolic theory of ecology (MTE) to calculate energy flux, an estimate of energy lost to parasites. We investigated the feasibility of using metabolic scaling rules to compare the energetic burden of parasitism among individuals. Specifically, we found substantial sensitivity of energy flux estimates to input parameters used in the MTE equation when using available data from a model host–parasite system (Gasterosteus aculeatus and Schistocephalus solidus). Using literature values, size data from parasitized wild fish, and a respirometry experiment, we estimate that a single S. solidus tapeworm may extract up to 32% of its stickleback host's baseline metabolic energy requirement, and that parasites in multiple infections may collectively extract up to 46%. The amount of energy siphoned from stickleback to tapeworms is large but did not instigate an increase in respiration rate in the current study. This emphasizes the importance of future work focusing on how parasites influence ecosystem energetics. The approach of using the MTE to calculate energy flux provides great promise as a quantitative foundation for such estimates and provides a more concrete metric of parasite impact on hosts than parasite abundance alone

    Host-dependent differences in measures of condition associated with Anilocra spp. parasitism in two coral reef fishes

    No full text
    Parasites account for over half of the biodiversity on coral reefs, yet their ecological impacts are poorly understood. Cymothoid isopods of the genus Anilocra are large, conspicuous ectoparasites of coral reef fishes. French grunt (Haemulon flavolineatum) and brown chromis (Chromis multilineata) are commonly infected by Anilocra spp. in the Caribbean. These fishes play a significant role in trophic connectivity through their foraging and activity patterns, and Anilocra spp. infection has been reported to influence the trophic interactions of some fishes. Yet, how these changes manifest physiologically has not been quantified. Thus to determine the energetic effects of Anilocra spp. on French grunt and brown chromis, the relationships between Anilocra spp. infection and condition factor, percent moisture in the muscle tissue, total muscle tissue calories, and gut content volume were examined. The results of these analyses revealed that A. haemuli-infected French grunt had greater percent moisture in the muscle tissue but similar condition scores, calorie values, and gut content volumes compared to uninfected conspecifics. By comparison, Anilocra chromis-infected brown chromis had reduced condition factor, but similar percent moisture in the muscle tissue and total muscle tissue calories, as compared to uninfected conspecifics. This study provides evidence that infection by parasites of the same genus and within the same localities can have differential effects on fish host species, such that generalizations about the effects of parasitism across and within genera should be made cautiously

    Behavioural effects of the common brain-infecting parasite Pseudoloma neurophilia in laboratory zebrafish (Danio rerio)

    Get PDF
    Research conducted on model organisms may be biased due to undetected pathogen infections. Recently, screening studies discovered high prevalence of the microsporidium Pseudoloma neurophilia in zebrafish (Danio rerio) facilities. This spore-forming unicellular parasite aggregates in brain regions associated with motor function and anxiety, and despite its high occurrence little is known about how sub-clinical infection affects behaviour. Here, we assessed how P. neurophilia infection alters the zebrafish´s response to four commonly used neurobehavioral tests, namely: mirror biting, open field, light/dark preference and social preference, used to quantify aggression, exploration, anxiety, and sociability. Although sociability and aggression remained unaltered, infected hosts exhibited reduced activity, elevated rates of freezing behaviour, and sex-specific effects on exploration. These results indicate that caution is warranted in the interpretation of zebrafish behaviour, particularly since in most cases infection status is unknown. This highlights the importance of comprehensive monitoring procedures to detect sub-clinical infections in laboratory animals

    Low Susceptibility of Invasive Red Lionfish (Pterois volitans) to a Generalist Ectoparasite in Both Its Introduced and Native Ranges

    No full text
    Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans) have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges
    corecore