63 research outputs found

    Patient satisfaction in the long-term effects of Eustachian tube balloon dilation is encouraging

    Get PDF
    Object: To investigate the long-term effects of balloon Eustachian tuboplasty (BET) from patient’s perspective and to discover which symptoms of Eustachian tube dysfunction (ETD) benefit the most from BET.Method: We designed a retrospective postal questionnaire based on the seven-item ETD questionnaire (ETDQ-7). Our questionnaire covered the severity of present ETD symptoms in comparison with the preoperative situation, the severity of current overall ear symptoms, and possible surgical interventions after BET. Forty-six patients treated in our institution between 2011 and 2013 fulfilled the inclusion criteria and 74% (34 patients; total 52 ears treated with BET) returned the questionnaire with a mean follow-up time of 3.1 years (range 1.8-4.6 years).Results: Pain in the ears, feeling of pressure in the ears, and feeling that ears are clogged had reduced in 75% of the ears that suffered from these symptoms preoperatively. Seventy-seven percent of all the responders felt that their overall ear symptoms were reduced. Altogether, 82% of all the patients stated that they would undergo BET again if their ear symptoms returned to the preoperative level.Conclusion: Patient satisfaction in the long-term effects of BET is encouraging. These results may help clinicians in preoperative patient selection and counselling.</p

    Renpenning Syndrome Maps to Xp11

    Get PDF
    SummaryMutations in genes on the X chromosome are believed to be responsible for the excess of males among individuals with mental retardation. Such genes are numerous, certainly >100, and cause both syndromal and nonsyndromal types of mental retardation. Clinical and molecular studies have been conducted on the Mennonite family with X-linked mental retardation (XLMR) reported, in 1962, by Renpenning et al. The clinical phenotype includes severe mental retardation, microcephaly, up-slanting palpebral fissures, small testes, and stature shorter than that of nonaffected males. Major malformations, neuromuscular abnormalities, and behavioral disturbances were not seen. Longevity is not impaired. Carrier females do not show heterozygote manifestations. The syndrome maps to Xp11.2-p11.4, with a maximum LOD score of 3.21 (recombination fraction 0) for markers between DXS1039 and DXS1068. Renpenning syndrome (also known as “MRXS8”; gene RENS1, MIM 309500) shares phenotypic manifestations with several other XLMR syndromes, notably the Sutherland-Haan syndrome. In none of these entities has the responsible gene been isolated; hence, the possibility that two or more of them may be allelic cannot be excluded at present

    Routine Multiplex Mutational Profiling of Melanomas Enables Enrollment in Genotype-Driven Therapeutic Trials

    Get PDF
    Purpose: Knowledge of tumor mutation status is becoming increasingly important for the treatment of cancer, as mutation-specific inhibitors are being developed for clinical use that target only sub-populations of patients with particular tumor genotypes. Melanoma provides a recent example of this paradigm. We report here development, validation, and implementation of an assay designed to simultaneously detect 43 common somatic point mutations in 6 genes (BRAF, NRAS, KIT, GNAQ, GNA11, and CTNNB1) potentially relevant to existing and emerging targeted therapies specifically in melanoma. Methods: The test utilizes the SNaPshot method (multiplex PCR, multiplex primer extension, and capillary electrophoresis) and can be performed rapidly with high sensitivity (requiring 5–10% mutant allele frequency) and minimal amounts of DNA (10–20 nanograms). The assay was validated using cell lines, fresh-frozen tissue, and formalin-fixed paraffin embedded tissue. Clinical characteristics and the impact on clinical trial enrollment were then assessed for the first 150 melanoma patients whose tumors were genotyped in the Vanderbilt molecular diagnostics lab. Results: Directing this test to a single disease, 90 of 150 (60%) melanomas from sites throughout the body harbored a mutation tested, including 57, 23, 6, 3, and 2 mutations in BRAF, NRAS, GNAQ, KIT, and CTNNB1, respectively. Among BRAF V600 mutations, 79%, 12%, 5%, and 4% were V600E, V600K, V600R, and V600M, respectively. 23 of 54 (43%) patients with mutation harboring metastatic disease were subsequently enrolled in genotype-driven trials. Conclusion: We present development of a simple mutational profiling screen for clinically relevant mutations in melanoma. Adoption of this genetically-informed approach to the treatment of melanoma has already had an impact on clinical trial enrollment and prioritization of therapy for patients with the disease

    A Novel BMPR2 Mutation Associated with Pulmonary Arterial Hypertension in an Octogenarian

    Get PDF
    We describe the case of an 83-year-old man with a family history of pulmonary hypertension (PH) who presented with severe pulmonary arterial hypertension (PAH) and later tested positive for a novel bone morphogenetic protein receptor 2 (BMPR2) gene mutation. To our knowledge, this may be the oldest reported patient with PAH in whom a BMPR2 mutation was initially identified

    Methods for assessing DNA repair and repeat expansion in Huntington's Disease

    Get PDF
    Huntington’s disease (HD) is caused by a CAG repeat expansion in the HTT gene. Repeat length can change over time, both in individual cells and between generations, and longer repeats may drive pathology. Cellular DNA repair systems have long been implicated in CAG repeat instability but recent genetic evidence from humans linking DNA repair variants to HD onset and progression has reignited interest in this area. The DNA damage response plays an essential role in maintaining genome stability, but may also license repeat expansions in the context of HD. In this chapter we summarize the methods developed to assay CAG repeat expansion/contraction in vitro and in cells, and review the DNA repair genes tested in mouse models of HD. While none of these systems is currently ideal, new technologies, such as long-read DNA sequencing, should improve the sensitivity of assays to assess the effects of DNA repair pathways in HD. Improved assays will be essential precursors to high-throughput testing of small molecules that can alter specific steps in DNA repair pathways and perhaps ameliorate expansion or enhance contraction of the HTT CAG repeat

    Lack of ß-amyloid cleaving enzyme-1 (BACE1) impairs long-term synaptic plasticity but enhances granule cell excitability and oscillatory activity in the dentate gyrus in vivo

    No full text
    BACE1 is a beta-secretase involved in the cleavage of amyloid precursor protein and the pathogenesis of Alzheimer's disease (AD). The entorhinal cortex and the dentate gyrus are important for learning and memory, which are affected in the early stages of AD. Since BACE1 is a potential target for AD therapy, it is crucial to understand its physiological role in these brain regions. Here, we examined the function of BACE1 in the dentate gyrus. We show that loss of BACE1 in the dentate gyrus leads to increased granule cell excitability, indicated by enhanced efficiency of synaptic potentials to generate granule cell spikes. The increase in granule cell excitability was accompanied by prolonged paired-pulse inhibition, altered network gamma oscillations, and impaired synaptic plasticity at entorhinal-dentate synapses of the perforant path. In summary, this is the first detailed electrophysiological study of BACE1 deletion at the network level in vivo. The results suggest that BACE1 is important for normal dentate gyrus network function. This has implications for the use of BACE1 inhibitors as therapeutics for AD therapy, since BACE1 inhibition could similarly disrupt synaptic plasticity and excitability in the entorhinal-dentate circuitry
    corecore