1,238 research outputs found

    High-speed imaging in fluids

    Get PDF
    High-speed imaging is in popular demand for a broad range of experiments in fluids. It allows for a detailed visualization of the event under study by acquiring a series of image frames captured at high temporal and spatial resolution. This review covers high-speed imaging basics, by defining criteria for high-speed imaging experiments in fluids and to give rule-of-thumbs for a series of cases. It also considers stroboscopic imaging, triggering and illumination, and scaling issues. It provides guidelines for testing and calibration. Ultra high-speed imaging at frame rates exceeding 1 million frames per second is reviewed, and the combination of conventional experiments in fluids techniques with high-speed imaging techniques are discussed. The review is concluded with a high-speed imaging chart, which summarizes criteria for temporal scale and spatial scale and which facilitates the selection of a high-speed imaging system for the applicatio

    On the sound of snapping shrimp

    Get PDF
    Snapping shrimp produce a snapping sound by an extremely rapid closure of their snapper claw. Source levels reported for Alpheus heterochaelis are as high as 220 dB (peak-to-peak) re. 1 µPa at 1 m distance. The loud snap has been attributed to the mechanical contact made when the snapper claw contracts. The recent ultra-high-speed imaging of the snapper claw closure at 40500 frames per second has revealed that the sound is, in fact, generated by the collapse of a cavitation bubble formed in a fast flowing water jet forced out from between the claws during claw closure. A temporal analysis of the sound recordings and the high-speed images shows that no sound is associated with the claw closure, while a very prominent signal is observed during the collapse of the cavitation bubble. Gallery of Fluid Motion\ud Award-winning entry 200

    Hysteretic clustering in granular gas

    Get PDF
    Granular material is vibro-fluidized in N=2 and N=3 connected compartments, respectively. For sufficiently strong shaking the granular gas is equi-partitioned, but if the shaking intensity is lowered, the gas clusters in one compartment. The phase transition towards the clustered state is of 2nd order for N=2 and of 1st order for N=3. In particular, the latter is hysteretic. The experimental findings are accounted for within a dynamical model that exactly has the above properties

    Bubble size prediction in co-flowing streams

    Get PDF
    In this paper, the size of bubbles formed through the breakup of a gaseous jet in a co-axial microfluidic device is derived. The gaseous jet surrounded by a co-flowing liquid stream breaks up into monodisperse microbubbles and the size of the bubbles is determined by the radius of the inner gas jet and the bubble formation frequency. We obtain the radius of the gas jet by solving the Navier-Stokes equations for low Reynolds number flows and by minimization of the dissipation energy. The prediction of the bubble size is based on the system's control parameters only, i.e. the inner gas flow rate QiQ_i, the outer liquid flow rate QoQ_o, and the tube radius RR. For a very low gas-to-liquid flow rate ratio (Qi/Qo0Q_i / Q_o \rightarrow 0) the bubble radius scales as rb/RQi/Qor_b / R \propto \sqrt{Q_i / Q_o}, independently of the inner to outer viscosity ratio ηi/ηo\eta_i/\eta_o and of the type of the velocity profile in the gas, which can be either flat or parabolic, depending on whether high-molecular-weight surfactants cover the gas-liquid interface or not. However, in the case in which the gas velocity profiles are parabolic and the viscosity ratio is sufficiently low, i.e. ηi/ηo1\eta_i/\eta_o \ll 1, the bubble diameter scales as rb(Qi/Qo)βr_b \propto (Q_i/Q_o)^\beta, with β\beta smaller than 1/2

    Harmonic chirp imaging method for ultrasound contrast agent

    Get PDF
    Coded excitation is currently used in medical ultrasound to increase signal-to-noise ratio (SNR) and penetration depth. We propose a chirp excitation method\ud for contrast agents using the second harmonic component of the response. This method is based on a compression filter that selectively compresses and extracts the second harmonic component from the received echo signal. Simulations have shown a clear increase in response for chirp excitation\ud over pulse excitation with the same peak amplitude. This was confirmed by two-dimensional (2-D) optical observations of bubble response with a fast framing camera. To evaluate the harmonic compression method, we applied it to\ud simulated bubble echoes, to measured propagation harmonics, and to B-mode scans of a flow phantom and compared it to regular pulse excitation imaging. An increase of approximately 10 dB in SNR was found for chirp excitation. The\ud compression method was found to perform well in terms of resolution. Axial resolution was in all cases within 10% of the axial resolution from pulse excitation. Range side-lobe levels were 30 dB below the main lobe for the simulated bubble echoes and measured propagation harmonics. However,\ud side-lobes were visible in the B-mode contrast images

    Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking

    Get PDF
    The Greek aperitif Ouzo is not only famous for its specific anise-flavored taste, but also for its ability to turn from a transparent miscible liquid to a milky-white colored emulsion when water is added. Recently, it has been shown that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil microdroplets, can also be triggered by the preferential evaporation of ethanol in an evaporating sessile Ouzo drop, leading to an amazingly rich drying process with multiple phase transitions [H. Tan et al., Proc. Natl. Acad. Sci. USA 113(31) (2016) 8642]. Due to the enhanced evaporation near the contact line, the nucleation of oil droplets starts at the rim which results in an oil ring encircling the drop. Furthermore, the oil droplets are advected through the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate the evaporation of mixture droplets in more detail, by successively increasing the mixture complexity from pure water over a binary water-ethanol mixture to the ternary Ouzo mixture (water, ethanol and anise oil). In particular, axisymmetric and full three-dimensional finite element method simulations have been performed on these droplets to discuss thermal effects and the complicated flow in the droplet driven by an interplay of preferential evaporation, evaporative cooling and solutal and thermal Marangoni flow. By using image analysis techniques and micro-PIV measurements, we are able to compare the numerically predicted volume evolutions and velocity fields with experimental data. The Ouzo droplet is furthermore investigated by confocal microscopy. It is shown that the oil ring predominantly emerges due to coalescence

    Microbubble shape oscillations excited through ultrasonic parametric driving\ud

    Get PDF
    An air bubble driven by ultrasound can become shape-unstable through a parametric instability. We report time-resolved optical observations of shape oscillations (mode n=2 to 6) of micron-sized single air bubbles. The observed mode number n was found to be linearly related to the ambient radius of the bubble. Above the critical driving pressure threshold for shape oscillations, which is minimal at the resonance of the volumetric radial mode, the observed mode number n is independent of the forcing pressure amplitude. The microbubble shape oscillations were also analyzed numerically by introducing a small nonspherical linear perturbation to a Rayleigh-Plesset-type equation, capturing the experimental observations in detail.\ud \u

    The Bouncing Jet: A Newtonian Liquid Rebounding off a Free Surface

    Get PDF
    We find that a liquid jet can bounce off a bath of the same liquid if the bath is moving horizontally with respect to the jet. Previous observations of jets rebounding off a bath (e.g. Kaye effect) have been reported only for non-Newtonian fluids, while we observe bouncing jets in a variety of Newtonian fluids, including mineral oil poured by hand. A thin layer of air separates the bouncing jet from the bath, and the relative motion replenishes the film of air. Jets with one or two bounces are stable for a range of viscosity, jet flow rate and velocity, and bath velocity. The bouncing phenomenon exhibits hysteresis and multiple steady states.Comment: 9 pages, 7 figures. submitted to Physical Review

    Lesion Eccentricity Plays a Key Role in Determining the Pressure Gradient of Serial Stenotic Lesions:Results from a Computational Hemodynamics Study

    Get PDF
    Purpose: In arterial disease, the presence of two or more serial stenotic lesions is common. For mild lesions, it is difficult to predict whether their combined effect is hemodynamically significant. This study assessed the hemodynamic significance of idealized serial stenotic lesions by simulating their hemodynamic interaction in a computational flow model. Materials and Methods: Flow was simulated with SimVascular software in 34 serial lesions, using moderate (15 mL/s) and high (30 mL/s) flow rates. Combinations of one concentric and two eccentric lesions, all 50% area reduction, were designed with variations in interstenotic distance and in relative direction of eccentricity. Fluid and fluid–structure simulations were performed to quantify the combined pressure gradient. Results: At a moderate flow rate, the combined pressure gradient of two lesions ranged from 3.8 to 7.7 mmHg, which increased to a range of 12.5–24.3 mmHg for a high flow rate. Eccentricity caused an up to two-fold increase in pressure gradient relative to concentric lesions. At a high flow rate, the combined pressure gradient for serial eccentric lesions often exceeded the sum of the individual lesions. The relative direction of eccentricity altered the pressure gradient by 15–25%. The impact of flow pulsatility and wall deformability was minor. Conclusion: This flow simulation study revealed that lesion eccentricity is an adverse factor in the hemodynamic significance of isolated stenotic lesions and in serial stenotic lesions. Two 50% lesions that are individually non-significant can combine more often than thought to hemodynamic significance in hyperemic conditions. Graphical Abstract: (Figure presented.).</p

    Irrigant flow in the root canal during ultrasonic activation:A numerical fluid-structure interaction model and its validation

    Get PDF
    Aim: The aim of the study was (a) to develop a three-dimensional numerical model combining the oscillation of a tapered ultrasonic file and the induced irrigant flow along with their two-way interaction in the confinement of a root canal. (b) To validate this model through comparison with experiments and theoretical (analytical) solutions of the flow. Methodology: Two partial numerical models, one for the oscillation of the ultrasonic file and another one for the irrigant flow inside the root canal around the file, were created and coupled in order to take into account the two-way coupled fluid–structure interaction. Simulations were carried out for ultrasonic K-files and for smooth wires driven at four different amplitudes in air or inside an irrigant-filled straight root canal. The oscillation pattern of the K-files was determined experimentally by Scanning Laser Vibrometry, and the flow pattern inside an artificial root canal was analysed using high-speed imaging together with Particle Image Velocimetry. Analytical solutions were obtained from an earlier study. Numerical, experimental and analytical results were compared to assess the validity of the model. Results: The comparison of the oscillation amplitude and node location of the ultrasonic files and of the irrigant flow field showed a close agreement between the simulations, experiments and theoretical solutions. Conclusions: The model is able to predict reliably the file oscillation and irrigant flow inside root canals during ultrasonic activation under similar conditions
    corecore