58 research outputs found

    Optical control of in-plane domain configuration and domain wall motion in ferroelectric and ferroelastic

    Full text link
    The sensitivity of ferroelectric domain walls to external stimuli makes them functional entities in nanoelectronic devices. Specifically, optically driven domain reconfiguration with in-plane polarization is advantageous and thus highly sought. Here, we show the existence of in-plane polarized sub-domains imitating a single domain state and reversible optical control of its domain wall movement in a single-crystal of ferroelectric BaTiO3. Similar optical control in the domain configuration of non-polar ferroelastic material indicates long-range ferroelectric polarization is not essential for the optical control of domain wall movement. Instead, flexoelectricity is found to be an essential ingredient for the optical control of the domain configuration and hence, ferroelastic materials would be another possible candidate for nanoelectronic device applications

    Cord Blood Stem Cell-Mediated Induction of Apoptosis in Glioma Downregulates X-Linked Inhibitor of Apoptosis Protein (XIAP)

    Get PDF
    XIAP (X-linked inhibitor of apoptosis protein) is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC) in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310). In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP). Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant gliomas

    Ultrafast laser micro-nano structuring of transparent materials with high aspect ratio

    Full text link
    Ultrafast lasers are ideal tools to process transparent materials because they spatially confine the deposition of laser energy within the material's bulk via nonlinear photoionization processes. Nonlinear propagation and filamentation were initially regarded as deleterious effects. But in the last decade, they turned out to be benefits to control energy deposition over long distances. These effects create very high aspect ratio structures which have found a number of important applications, particularly for glass separation with non-ablative techniques. This chapter reviews the developments of in-volume ultrafast laser processing of transparent materials. We discuss the basic physics of the processes, characterization means, filamentation of Gaussian and Bessel beams and provide an overview of present applications

    Hydrogen-Bonded Donor-Acceptor Arrays at the Solution-Graphite Interface

    Get PDF
    Controlling the nanoscale morphology of organic thin films represents a critical challenge in the fabrication of organic (opto)electronic devices. The morphology of the (multicomponent) thin films in turn depends on the mutual orientation of the molecular components and their supramolecular packing on the surface. Here, it is shown how the surface co-assembly of electron-donating and -accepting building blocks can be controlled via (supra)molecular design. Hexa-peri-hexabenzocoronene (HBC) derivatives with multiple hydrogen-bonding (H-bonding) sites were synthesized and their co-assembly with alkyl-substituted perylene tetracarboxy diimide (PDI) was studied using scanning tunneling microscopy (STM) at the solution–graphite interface. STM data shows that electron-rich HBCs co-assemble laterally with electron deficient PDIs via preprogrammed H-bonding sites with high fidelity. The surface stoichiometry of the two components could be readily tuned by changing the number of H-bonding sites on the HBC derivatives via organic synthesis. This model study highlights the utility of (supra)molecular design in co-assembly of building blocks relevant for organic electronics
    • …
    corecore