100 research outputs found
Abrupt wind regime changes in the North Atlantic Ocean during the past 30,000-60,000 years
The inputs of higher plants in Blake Outer Ridge (subtropical western North Atlantic) during marine
isotope stage 3 (MIS3) have been recorded at high resolution by quantification of C23–C33 odd carbon
numbered n-alkanes and C20–C30 even carbon numbered n-alkan-1-ols in sediment sections of Ocean Drilling
Program Site 1060. The changes of these proxies at this open marine site are mainly related to eolian inputs. Their concentrations and fluxes exhibit major abrupt variations that are correlated with Dansgaard/Oeschger (D/O) patterns in Greenland ice cores. The ratios between interstadials and stadials range between 2 and 9 times. The intense flux increases in the D/O stadials are linked to strong enhancements of the westerly wind regime at these subtropical latitudes during stadials. The observed variation was paralleled by changes in wind-blown dust and the polar circulation index in Greenland ice, which is in agreement with previously hypothesized atmospheric teleconnections between northern and middle-low latitudes of the Northern Hemisphere. The close correspondence between sedimentary and ice core proxies is evidence that crossings of the glacial climate thresholds involved major reorganizations of the troposphere. The observed large rise in higher plant biomarkers indicates that climate stabilization in the D/O stadial conditions led to main increases in wind intensity
Testing models of Cenozoic exhumation in the Western Greater Caucasus
The Greater Caucasus form the northernmost deformation front of the Arabia-Eurasia collision zone. Earlier thermochronometric studies on the crystalline core of the western Greater Caucasus highlighted an abrupt along-strike increase in cooling ages to the west of Mt. Elbrus. Twenty-eight thermochronometric analyses conducted as part of this study confirm this pattern. Overall Cenozoic exhumation was restricted to less than 5-7 km, with slow to moderate punctuated Oligo-Miocene cooling. Cooling rates increased during the Late Miocene to Pliocene. These are most rapid east of Mt. Elbrus, where they probably increased later than farther west (at c. 5 Ma rather than 10-8 Ma). Differential cooling rates do not appear to be driven by lateral variations in tectonic shortening. The region undergoing rapid young cooling does coincide, however, with an area of mantle-sourced Late Miocene and younger magmatism. Thermal relaxation or overprinting is ruled out because geomorphic and modern sediment flux data mirror the thermochronometric trends. The buoyancy effects of demonstrable mantle upwelling are capable of causing the magnitude of exhumation-related cooling recorded in this study, but typically act over wavelengths of several 100 km. We suggest that lithospheric heterogeneities are responsible for modulating the shorter wavelength differences in exhumation rate documented here. These heterogeneities may include the continuation of the same structures responsible for the eastern margin of the Stavropol High to the north of the Caucasus, although further work is required. Similar abrupt variations in mantle-supported uplift and exhumation modulated by crustal structure may occur in other mountain belts worldwide
Coupled Mg/Ca and clumped isotope analyses of foraminifera provide consistent water temperatures
The reliable determination of past seawater temperature is fundamental to paleoclimate studies. We test the robustness of two paleotemperature proxies by combining Mg/Ca and clumped isotopes (Δ47) on the same specimens of core top planktonic foraminifera. The strength of this approach is that Mg/Ca and Δ47 are measured on the same specimens of foraminifera, thereby providing two independent estimates of temperature. This replication constitutes a rigorous test of individual methods with the advantage that the same approach can be applied to fossil specimens. Aliquots for Mg/Ca and clumped analyses are treated in the same manner following a modified cleaning procedure of foraminifera for trace element and isotopic analyses. We analysed eight species of planktonic foraminifera from coretop samples over a wide range of temperatures from 2 to 29°C. We provide a new clumped isotope temperature calibrations using subaqueous cave carbonates, which is consistent with recent studies. Tandem Mg/Ca–Δ47 results follow an exponential curve as predicted by temperature calibration equations. Observed deviations from the predicted Mg/Ca-Δ47 relationship are attributed to the effects of Fe-Mn oxide coatings, contamination, or dissolution of foraminiferal tests. This coupled approach provides a high degree of confidence in temperature estimates when Mg/Ca and Δ47 yield concordant results, and can be used to infer the past δ18O of seawater (δ18Osw) for paleoclimate studies
100- kyr cyclicity in volcanic ash emplacement: evidence from a 1.1 Myr tephra record from the NW Pacific
It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth’s climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the ~100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and δ18O record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and ∼13 ± 2 kyr before the δ18O minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7–1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the δ18O record diminishes, while the tephra record maintains its strong 100 kyr periodicity
100- kyr cyclicity in volcanic ash emplacement: evidence from a 1.1 Myr tephra record from the NW Pacific
It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the similar to 100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and delta O-18 record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and similar to 13 +/- 2 kyr before the delta O-18 minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the delta O-18 record diminishes, while the tephra record maintains its strong 100 kyr periodicity
Fast and slow components of interstadial warming in the North Atlantic during the last glacial
The abrupt nature of warming events recorded in Greenland ice-cores during the last glacial has generated much debate over their underlying mechanisms. Here, we present joint marine and terrestrial analyses from the Portuguese Margin, showing a succession of cold stadials and warm interstadials over the interval 35–57 ka. Heinrich stadials 4 and 5 contain considerable structure, with a short transitional phase leading to an interval of maximum cooling and aridity, followed by slowly increasing sea-surface temperatures and moisture availability. A climate model experiment reproduces the changes in western Iberia during the final part of Heinrich stadial 4 as a result of the gradual recovery of the Atlantic meridional overturning circulation. What emerges is that Greenland ice-core records do not provide a unique template for warming events, which involved the operation of both fast and slow components of the coupled atmosphere–ocean–sea-ice system, producing adjustments over a range of timescales
Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids
Allylic trichloroacetimidates bearing a 2-vinyl or 2-allylaryl group have been designed as substrates for a one-pot, two-step multi-bond-forming process leading to the general preparation of aminoindenes and amino-substituted 1,4-dihydronaphthalenes. The synthetic utility of the privileged structures formed from this one-pot process was demonstrated with the total synthesis of four oxybenzo[c]phenanthridine alkaloids, oxychelerythrine, oxysanguinarine, oxynitidine, and oxyavicine. An intramolecular biaryl Heck coupling reaction, catalyzed using the Hermann–Beller palladacycle was used to effect the key step during the synthesis of the natural products
- …