50 research outputs found
Amorphous formulations of indomethacin and griseofulvin prepared by electrospinning
Following an array of optimization
experiments, two series of electrospun
polyvinylpyrrolidone (PVP) fibers were prepared. One set of fibers
contained various loadings of indomethacin, known to form stable glasses,
and the other griseofulvin (a poor glass former). Drug loadings of
up to 33% w/w were achieved. Electron microscopy data showed the fibers
largely to comprise smooth and uniform cylinders, with evidence for
solvent droplets in some samples. In all cases, the drug was found
to exist in the amorphous physical state in the fibers on the basis
of X-ray diffraction and differential scanning calorimetry (DSC) measurements.
Modulated temperature DSC showed that the relationship between a formulation’s
glass transition temperature (<i>T</i><sub>g</sub>) and
the drug loading follows the Gordon–Taylor equation, but not
the Fox equation. The results of Gordon–Taylor analysis indicated
that the drug/polymer interactions were stronger with indomethacin.
The interactions between drug and polymer were explored in more detail
using molecular modeling simulations and again found to be stronger
with indomethacin; the presence of significant intermolecular forces
was further confirmed using IR spectroscopy. The amorphous form of
both drugs was found to be stable after storage of the fibers for
8 months in a desiccator (relative humidity <25%). Finally, the
functional performance of the fibers was studied; in all cases, the
drug-loaded fibers released their drug cargo very rapidly, offering
accelerated dissolution over the pure drug
Preparation and evaluation of azithromycin binary solid dispersions using various polyethylene glycols for the improvement of the drug solubility and dissolution rate
ABSTRACT Azithromycin is a water-insoluble drug, with a very low bioavailability. In order to increase the solubility and dissolution rate, and consequently increase the bioavailability of poorly-soluble drugs (such as azithromycin), various techniques can be applied. One of such techniques is "solid dispersion". This technique is frequently used to improve the dissolution rate of poorly water-soluble compounds. Owing to its low solubility and dissolution rate, azithromycin does not have a suitable bioavailability. Therefore, the main purpose of this investigation was to increase the solubility and dissolution rate of azithromycin by preparing its solid dispersion, using different Polyethylene glycols (PEG). Preparations of solid dispersions and physical mixtures of azithromycin were made using PEG 4000, 6000, 8000, 12000 and 20000 in various ratios, based on the solvent evaporation method. From the studied drug release profile, it was discovered that the dissolution rate of the physical mixture, as the well as the solid dispersions, were higher than those of the drug alone. There was no chemical incompatibility between the drug and polymer from the observed Infrared (IR) spectra. Drug-polymer interactions were also investigated using Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD) and Scanning Election Microscopy (SEM). In conclusion, the dissolution rate and solubility of azithromycin were found to improve significantly, using hydrophilic carriers, especially PEG 6000
NMR structure note: Repetitive domain of aciniform spidroin 1 from Nephila antipodiana
10.1007/s10858-012-9679-5Journal of Biomolecular NMR544415-420JBNM