143 research outputs found
Transforming growth factor-beta and endoglin signaling orchestrate wound healing
Physiological wound healing is a complex process requiring the temporal and spatial co-ordination of various signaling networks, biomechanical forces, and biochemical signaling pathways in both hypoxic and non-hypoxic conditions. Although a plethora of factors are required for successful physiological tissue repair, transforming growth factor beta (TGF-β) expression has been demonstrated throughout wound healing and shown to regulate many processes involved in tissue repair, including production of ECM, proteases, protease inhibitors, migration, chemotaxis, and proliferation of macrophages, fibroblasts of the granulation tissue, epithelial and capillary endothelial cells. TGF-β mediates these effects by stimulating signaling pathways through a receptor complex which contains Endoglin. Endoglin is expressed in a broad spectrum of proliferating and stem cells with elevated expression during hypoxia, and regulates important cellular functions such as proliferation and adhesion via Smad signaling. This review focuses on how the TGF-β family and Endoglin, regulate stem cell availability, and modulate cellular behavior within the wound microenvironment, includes current knowledge of the signaling pathways involved, and explores how this information may be applicable to inflammatory and/or angiogenic diseases such as fibrosis, rheumatoid arthritis and metastatic cancer
MicroRNAs and their roles in breast cancer bone metastasis
Bone metastasis occurs in advanced stages of breast cancer, worsening the quality of life and increasing the mortality of patients. Current treatments for bone metastasis are only palliative, and efficient therapeutic targets need to be still identified. MicroRNAs (miRNAs) are a large class of small non-coding RNAs that regulate gene expression within cells. Interestingly, the expression of certain miRNAs has been associated with several stages of bone metastasis progression, highlighting the importance of these small RNAs during the course of the metastatic disease. In this review, we aim to summarise the most recent findings on miRNAs and their mRNA targets in driving breast cancer bone metastasis. Furthermore, we discuss the possibility to use miRNAs as direct therapeutic targets or as advanced therapies for breast cancer bone metastasis, as well as their potential as predictive biomarkers of bone metastasis for an early diagnosis and a better tailoring of therapies for cancer patients
Biallelic inheritance of hypomorphic PKD1 variants is highly prevalent in very early onset polycystic kidney disease
Purpose
To investigate the prevalence of biallelic PKD1 and PKD2 variants underlying very early onset (VEO) polycystic kidney disease (PKD) in a large international pediatric cohort referred for clinical indications over a 10-year period (2010–2020).
Methods
All samples were tested by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) of PKD1 and PKD2 genes and/or a next-generation sequencing panel of 15 additional cystic genes including PKHD1 and HNF1B. Two patients underwent exome or genome sequencing.
Results
Likely causative PKD1 or PKD2 variants were detected in 30 infants with PKD-VEO, 16 of whom presented in utero. Twenty-one of 30 (70%) had two variants with biallelic in trans inheritance confirmed in 16/21, 1 infant had biallelic PKD2 variants, and 2 infants had digenic PKD1/PKD2 variants. There was no known family history of ADPKD in 13 families (43%) and a de novo pathogenic variant was confirmed in 6 families (23%).
Conclusion
We report a high prevalence of hypomorphic PKD1 variants and likely biallelic disease in infants presenting with PKD-VEO with major implications for reproductive counseling. The diagnostic interpretation and reporting of these variants however remains challenging using current American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) and Association of Clinical Genetic Science (ACGS) variant classification guidelines in PKD-VEO and other diseases affected by similar variants with incomplete penetrance
A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis
Tissue patterning in multicellular organisms is the output of precise spatio–temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant's life cycle. Auxin signaling occurs through binding of the auxin molecule to a TIR1/AFB F-box ubiquitin ligase, allowing interaction with Aux/IAA transcriptional repressor proteins. These are subsequently ubiquitinated and degraded via the 26S proteasome, leading to derepression of auxin response factors (ARFs). How auxin is able to elicit such a diverse range of developmental responses through a single signaling module has not yet been resolved. Here we present an alternative auxin-sensing mechanism in which the ARF ARF3/ETTIN controls gene expression through interactions with process-specific transcription factors. This noncanonical hormone-sensing mechanism exhibits strong preference for the naturally occurring auxin indole 3-acetic acid (IAA) and is important for coordinating growth and patterning in diverse developmental contexts such as gynoecium morphogenesis, lateral root emergence, ovule development, and primary branch formation. Disrupting this IAA-sensing ability induces morphological aberrations with consequences for plant fitness. Therefore, our findings introduce a novel transcription factor-based mechanism of hormone perception in plants.
Note that there is a CORRIGENDUM to this article:
http://eprints.whiterose.ac.uk/132306/
http://genesdev.cshlp.org/content/31/17/1821.ful
The positive effect of selective prostaglandin E2 receptor EP2 and EP4 blockade on cystogenesis in vitro is counteracted by increased kidney inflammation in vivo
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major cause of end-stage kidney disease in man. The central role of cyclic adenosine monophosphate (cAMP) in ADPKD pathogenesis has been confirmed by numerous studies including positive clinical trial data. Here, we investigated the potential role of another major regulator of renal cAMP, prostaglandin E2 (PGE2), in modifying disease progression in ADPKD models using selective receptor modulators to all four PGE2 receptor subtypes (EP1-4). In 3D-culture model systems utilizing dog (MDCK) and patient-derived (UCL93, OX161-C1) kidney cell lines, PGE2 strikingly promoted cystogenesis and inhibited tubulogenesis by stimulating proliferation while reducing apoptosis. The effect of PGE2 on tubulogenesis and cystogenesis in 3D-culture was mimicked or abolished by selective EP2 and EP4 agonists or antagonists but not those specific to EP1 or EP3. In a Pkd1 mouse model (Pkd1nl/nl), kidney PGE2 and COX-2 expression were increased by two-fold at the peak of disease (week four). However, Pkd1nl/nl mice treated with selective EP2 (PF-04418948) or EP4 (ONO-AE3-208) antagonists from birth for three weeks had more severe cystic disease and fibrosis associated with increased cell proliferation and macrophage infiltration. A similar effect was observed for the EP4 antagonist ONO-AE3-208 in a second Pkd1 model (Pax8rtTA-TetO-Cre-Pkd1f/f). Thus, despite the positive effects of slowing cyst growth in vitro, the more complex effects of inhibiting EP2 or EP4 in vivo resulted in a worse outcome, possibly related to unexpected pro-inflammatory effects
MiR-662 is associated with metastatic relapse in early-stage breast cancer and promotes metastasis by stimulating cancer cell stemness
Background
Breast cancer (BC) metastasis, which often occurs in bone, contributes substantially to mortality. MicroRNAs play a fundamental role in BC metastasis, although microRNA-regulated mechanisms driving metastasis progression remain poorly understood.
Methods
MiRome analysis in serum from BC patients was performed by TaqManâ„¢ low-density array. MiR-662 was overexpressed following MIMIC-transfection or lentivirus transduction. Animal models were used to investigate the role of miR-662 in BC (bone) metastasis. The effect of miR-662-overexpressing BC cell conditioned medium on osteoclastogenesis was investigated. ALDEFLUOR assays were performed to study BC stemness. RNA-sequencing transcriptomic analysis of miR-662-overexpressing BC cells was performed to evaluate gene expression changes.
Results
High levels of hsa-miR-662 (miR-662) in serum from BC patients, at baseline (time of surgery), were associated with future recurrence in bone. At an early-stage of the metastatic disease, miR-662 could mask the presence of BC metastases in bone by inhibiting the differentiation of bone-resorbing osteoclasts. Nonetheless, metastatic miR-662-overexpressing BC cells then progressed as overt osteolytic metastases thanks to increased stem cell-like traits.
Conclusions
MiR-662 is involved in BC metastasis progression, suggesting it may be used as a prognostic marker to identify BC patients at high risk of metastasis
The common PKD1 p.(Ile3167Phe) variant is hypomorphic and associated with very early onset, biallelic polycystic kidney disease
Biallelic PKD1 variants, including hypomorphic variants, can cause very early onset polycystic kidney disease (VEO-PKD). A family with unexplained recurrent VEO-PKD and neonatal demise in one dizygotic twin was referred for clinical testing. Further individuals with the putative hypomorphic PKD1 variant, p.(Ile3167Phe), were identified from the UK 100,000 genomes project (100 K), UK Biobank (UKBB), and a review of the literature. We identified a likely pathogenic PKD1 missense paternal variant and the putative hypomorphic PKD1 variant from the unaffected mother in the deceased twin but only the paternal PKD1 variant in the surviving dizygotic twin. Analysis of 100 K cases identified a second family with two siblings with similar biallelic inheritance who presented at birth with VEO-PKD and reached kidney failure in their teens unlike other affected relatives. Finally, a survey of 618 UKBB cases confirmed that adult patients monoallelic for PKD1 p.(Ile3167Phe) had normal kidney function. Our data reveals that p.(Ile3167Phe) is the second most common PKD1 hypomorphic variant identified and is neutral in heterozygosity but is associated with VEO-PKD when inherited in trans with a pathogenic PKD1 variant. Care should be taken to ensure that it is not automatically filtered from sequence data for VEO cases
Me3Al-mediated domino nucleophilic addition/intramolecular cyclisation of 2-(2-oxo-2-phenylethyl)benzonitriles with amines; a convenient approach for the synthesis of substituted 1-aminoisoquinolines
A simple and efficient protocol for the construction of 1-aminoisoquinolines was achieved by treating 2-(2-oxo-2- phenylethyl)benzonitriles with amines in the presence of Me 3 Al. The reaction proceeds via a domino nucleophilic addition with subsequent intramolecular cyclisation. This method provides a wide variety of substituted 1-aminoisoquinolines with good func- tional group tolerance. Furthermore, the synthetic utility of this protocol was demonstrated in the successful synthesis of the anti- tumor agent CWJ-a-5 in gram scale
Global microRNA profiling in human urinary exosomes reveals novel disease biomarkers and cellular pathways for Autosomal Dominant Polycystic Kidney Disease
MicroRNAs (miRNAs) play an important role in regulating gene expression in health and disease but their role in modifying disease expression in Autosomal Dominant Polycystic Kidney Disease (ADPKD) remains uncertain. Here, we profiled human urinary exosome miRNA by global small RNA-sequencing in an initial discovery cohort of seven patients with ADPKD with early disease (eGFR over 60ml/min/1.73m2), nine with late disease (eGFR under 60ml/min/1.73m2), and compared their differential expression with six age and sex matched healthy controls. Two kidney-enriched candidate miRNA families were identified (miR-192/miR-194-2 and miR-30) and selected for confirmatory testing in a 60 patient validation cohort by quantitative polymerase chain reaction. We confirmed that miR-192-5p, miR-194- 5p, miR-30a-5p, miR-30d-5p and miR-30e-5p were significantly downregulated in patient urine exosomes, in murine Pkd1 cystic kidneys and in human PKD1 cystic kidney tissue. All five miRNAs showed significant correlations with baseline eGFR and ultrasound-determined mean kidney length and improved the diagnostic performance (area under the curve) of mean kidney length for the rate of disease progression. Finally, inverse correlations of these two miRNA families with increased expression in their predicted target genes in patient PKD1 cystic tissue identified dysregulated pathways and transcriptional networks including novel interactions between miR-194-5p and two potentially relevant candidate genes, PIK3R1 and ANO1. Thus, our results identify a subset of urinary exosomal miRNAs that could serve as novel biomarkers of disease progression and suggest new therapeutic targets in ADPKD
- …