96 research outputs found
Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts
Engineered bioimplants for cardiac repair require functional vascularization and innervation for proper integration with the surrounding myocardium. The aim of this work was to study nerve sprouting and neovascularization in an acellular pericardial-derived scaffold used as a myocardial bioimplant. To this end, 17 swine were submitted to a myocardial infarction followed by implantation of a decellularized human pericardial-derived scaffold. After 30 days, animals were sacrificed and hearts were analyzed with hematoxylin/eosin and Masson's and Gallego's modified trichrome staining. Immunohistochemistry was carried out to detect nerve fibers within the cardiac bioimplant by using βIII tubulin and S100 labeling. Isolectin B4, smooth muscle actin, CD31, von Willebrand factor, cardiac troponin I, and elastin antibodies were used to study scaffold vascularization. Transmission electron microscopy was performed to confirm the presence of vascular and nervous ultrastructures. Left ventricular ejection fraction (LVEF), cardiac output (CO), stroke volume, end-diastolic volume, end-systolic volume, end-diastolic wall mass, and infarct size were assessed by using magnetic resonance imaging (MRI). Newly formed nerve fibers composed of several amyelinated axons as the afferent nerve endings of the heart were identified by immunohistochemistry. Additionally, neovessel formation occurred spontaneously as small and large isolectin B4-positive blood vessels within the scaffold. In summary, this study demonstrates for the first time the neoformation of vessels and nerves in cell-free cardiac scaffolds applied over infarcted tissue. Moreover, MRI analysis showed a significant improvement in LVEF (P = 0.03) and CO (P = 0.01) and a 43 % decrease in infarct size (P = 0.007)
The adult heart requires baseline expression of the transcription factor Hand2 to withstand RV pressure overload
AIMS: Research on the pathophysiology of right ventricular (RV) failure has, in spite of the associated high mortality and morbidity, lagged behind compared to the left ventricle (LV).Previous work from our lab revealed that the embryonic basic helix-loop-helix transcription factor heart and neural crest derivatives expressed-2 (Hand2) is re-expressed in the adult heart and activates a 'fetal gene program' contributing to pathological cardiac remodeling under conditions of LV pressure overload. As such, ablation of cardiac expression of Hand2 conferred protection to cardiac stress and abrogated the maladaptive effects that were observed upon increased expression levels. In this study, we aimed to understand the contribution of Hand2 to RV remodeling in response to pressure overload induced by pulmonary artery banding (PAB). METHODS AND RESULTS: In the present study, Hand2F/F and MCM- Hand2F/F mice were treated with tamoxifen (control and knockout, respectively) and subjected to six weeks of RV pressure overload induced by PAB. Echocardiographic- and MRI-derived hemodynamic parameters as well as molecular remodeling were assessed for all experimental groups and compared to sham-operated controls. Six weeks after PAB, levels of Hand2 expression increased in the control banded animals but, as expected, remained absent in the knockout hearts. Despite the dramatic differences in Hand2 expression, pressure overload resulted in impaired cardiac function independently of the genotype. In fact, Hand2 depletion seems to sensitize the RV to pressure overload as these mice develop more hypertrophy and more severe cardiac dysfunction. Higher expression levels of HAND2 were also observed in RV samples of human hearts from patients with pulmonary hypertension. In turn, the LV of RV-pressure overloaded hearts was also dramatically affected as reflected by changes in shape, decreased LV mass and impaired cardiac function. RNA sequencing revealed a distinct set of genes that are dysregulated in the pressure-overloaded RV, compared to the previously described pressure-overloaded LV. CONCLUSIONS: Cardiac-specific depletion of Hand2 is associated with severe cardiac dysfunction in conditions of RV pressure overload. While inhibiting Hand2 expression can prevent cardiac dysfunction in conditions of LV pressure overload, the same does not hold true for conditions of RV pressure overload. This study highlights the need to better understand the molecular mechanisms driving pathological remodeling of the RV in contrast to the LV, in order to better diagnose and treat patients with RV or LV failure. TRANSLATIONAL PERSPECTIVE: RV failure associated with pulmonary hypertension reduces long-term survival rate to 55% within 3 years, suggesting that 3 years after diagnosis almost half of the patients will die. To revert these numbers an adequate RV-specific and, therefore, more efficient treatment is needed. Our work suggests that current therapies and potential mechanisms underlying LV failure may not be suitable for RV failure. While Hand2 deletion is favorable in LV response to stress, it is particularly detrimental in the RV under similar conditions, and thus, highlighting potential severe consequences of not differentiating therapeutic targets or treatment for RV or LV failure
Development of a 3-dimensional model to study right heart dysfunction in pulmonary arterial hypertension: first observations
Pulmonary arterial hypertension (PAH) patients eventually die of right heart failure (RHF). Currently, there is no suitable pre-clinical model to study PAH. Therefore, we aim to develop a right heart dysfunction (RHD) model using the 3-dimensional engineered heart tissue (EHT) approach and cardiomyocytes derived from patient-induced pluripotent stem cells (iPSCs) to unravel the mechanisms that determine the fate of a pressure-overloaded right ventricle. iPSCs from PAH and healthy control subjects were differentiated into cardiomyocytes (iPSC-CMs), incorporated into the EHT, and maintained for 28 days. In comparison with control iPSC-CMs, PAH-derived iPSC-CMs exhibited decreased beating frequency and increased contraction and relaxation times. iPSC-CM alignment within the EHT was observed. PAH-derived EHTs exhibited higher force, and contraction and relaxation times compared with control EHTs. Increased afterload was induced using 2x stiffer posts from day 0. Due to high variability, there were no functional differences between normal and stiffer EHTs, and no differences in the hypertrophic gene expression. In conclusion, under baseline spontaneous conditions, PAH-derived iPSC-CMs and EHTs show prolonged contraction compared with controls, as observed clinically in PAH patients. Further optimization of the hypertrophic model and profound characterization may provide a platform for disease modelling and drug screening.Therapeutic cell differentiatio
A Cell-Enriched Engineered Myocardial Graft Limits Infarct Size and Improves Cardiac Function
Altres ajuts: Fundació La Marató de TV3 [201502; 201516]; Beca de Recerca Bàsica de l'Acadèmia de Ciències Mèdiques i de la Salut de Catalunya i de Balears 2015; Beca d'Investigació Bàsica de la Societat Catalana de Cardiologia 2015; Generalitat de Catalunya (SGR 2014); Sociedad Española de Cardiología; Fundació Privada Daniel Bravo AndreuMyocardial infarction (MI) remains a dreadful disease around the world, causing irreversible sequelae that shorten life expectancy and reduce quality of life despite current treatment. Here, the authors engineered a cell-enriched myocardial graft, composed of a decellularized myocardial matrix refilled with adipose tissue-derived progenitor cells (EMG-ATDPC). Once applied over the infarcted area in the swine MI model, the EMG-ATDPC improved cardiac function, reduced infarct size, attenuated fibrosis progression, and promoted neovascularization of the ischemic myocardium. The beneficial effects exerted by the EMG-ATDPC and the absence of identified adverse side effects should facilitate its clinical translation as a novel MI therapy in humans
The thromboxane receptor antagonist NTP42 promotes beneficial adaptation and preserves cardiac function in experimental models of right heart overload
BackgroundPulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary artery pressure leading to right ventricular (RV) failure. While current PAH therapies improve patient outlook, they show limited benefit in attenuating RV dysfunction. Recent investigations demonstrated that the thromboxane (TX) A2 receptor (TP) antagonist NTP42 attenuates experimental PAH across key hemodynamic parameters in the lungs and heart. This study aimed to validate the efficacy of NTP42:KVA4, a novel oral formulation of NTP42 in clinical development, in preclinical models of PAH while also, critically, investigating its direct effects on RV dysfunction.MethodsThe effects of NTP42:KVA4 were evaluated in the monocrotaline (MCT) and pulmonary artery banding (PAB) models of PAH and RV dysfunction, respectively, and when compared with leading standard-of-care (SOC) PAH drugs. In addition, the expression of the TP, the target for NTP42, was investigated in cardiac tissue from several other related disease models, and from subjects with PAH and dilated cardiomyopathy (DCM).ResultsIn the MCT-PAH model, NTP42:KVA4 alleviated disease-induced changes in cardiopulmonary hemodynamics, pulmonary vascular remodeling, inflammation, and fibrosis, to a similar or greater extent than the PAH SOCs tested. In the PAB model, NTP42:KVA4 improved RV geometries and contractility, normalized RV stiffness, and significantly increased RV ejection fraction. In both models, NTP42:KVA4 promoted beneficial RV adaptation, decreasing cellular hypertrophy, and increasing vascularization. Notably, elevated expression of the TP target was observed both in RV tissue from these and related disease models, and in clinical RV specimens of PAH and DCM.ConclusionThis study shows that, through antagonism of TP signaling, NTP42:KVA4 attenuates experimental PAH pathophysiology, not only alleviating pulmonary pathologies but also reducing RV remodeling, promoting beneficial hypertrophy, and improving cardiac function. The findings suggest a direct cardioprotective effect for NTP42:KVA4, and its potential to be a disease-modifying therapy in PAH and other cardiac conditions
The thromboxane receptor antagonist NTP42 promotes beneficial adaptation and preserves cardiac function in experimental models of right heart overload
Background: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary artery pressure leading to right ventricular (RV) failure. While current PAH therapies improve patient outlook, they show limited benefit in attenuating RV dysfunction. Recent investigations demonstrated that the thromboxane (TX) A2 receptor (TP) antagonist NTP42 attenuates experimental PAH across key hemodynamic parameters in the lungs and heart. This study aimed to validate the efficacy of NTP42:KVA4, a novel oral formulation of NTP42 in clinical development, in preclinical models of PAH while also, critically, investigating its direct effects on RV dysfunction. Methods: The effects of NTP42:KVA4 were evaluated in the monocrotaline (MCT) and pulmonary artery banding (PAB) models of PAH and RV dysfunction, respectively, and when compared with leading standard-of-care (SOC) PAH drugs. In addition, the expression of the TP, the target for NTP42, was investigated in cardiac tissue from several other related disease models, and from subjects with PAH and dilated cardiomyopathy (DCM). Results: In the MCT-PAH model, NTP42:KVA4 alleviated disease-induced changes in cardiopulmonary hemodynamics, pulmonary vascular remodeling, inflammation, and fibrosis, to a similar or greater extent than the PAH SOCs tested. In the PAB model, NTP42:KVA4 improved RV geometries and contractility, normalized RV stiffness, and significantly increased RV ejection fraction. In both models, NTP42:KVA4 promoted beneficial RV adaptation, decreasing cellular hypertrophy, and increasing vascularization. Notably, elevated expression of the TP target was observed both in RV tissue from these and related disease models, and in clinical RV specimens of PAH and DCM. Conclusion: This study shows that, through antagonism of TP signaling, NTP42:KVA4 attenuates experimental PAH pathophysiology, not only alleviating pulmonary pathologies but also reducing RV remodeling, promoting beneficial hypertrophy, and improving cardiac function. The findings suggest a direct cardioprotective effect for NTP42:KVA4, and its potential to be a disease-modifying therapy in PAH and other cardiac conditions
Resolution of cystoid macular oedema after retinal detachment repair: Is intravitreal triamcinolone useful?
link_to_subscribed_fulltex
Heavy silicone oil (densiron) and supine position in the management of massive suprachoroidal hemorrhage: Use of heavy silicone for suprachoroidal hemorrhage
Purpose: To describe a case of massive suprachoroidal hemorrhage after a phacoemulsification managed with pars plana vitrectomy, heavy silicone oil (Densiron), and supine position. Methods: Report of a 69-year-old woman with systemic hypertension and under antiplatelet treatment who developed a massive suprachoroidal hemorrhage. Results: The patient underwent a pars plana vitrectomy and heavy oil endotamponade combined with 3 radial sclerotomies to drain the suprachoroidal blood. Two months after this surgery, the retina remains attached and visual acuity is 3/60 with aphakia and half of the vitreous cavity filled with Densiron. Conclusion: Pars plana vitrectomy and Densiron endotamponade with supine position can represent a good surgical option in such a dramatic case as a suprachoroidal hemorrhage. Long-term heavy silicone oil endotamponade cannot be advised in these cases. © 2012 Ophthalmic Communications Society, Inc.link_to_subscribed_fulltex
- …