142 research outputs found

    A new model for magnetoreception

    Get PDF
    Certain migratory birds can sense the earth's magnetic field. The nature of this process is not yet properly understood. Here we offer a simple explanation according to which birds literally `see' the local magnetic field: Our model relates the well-established radical pair hypothesis to the phenomenon of Haidinger's brush, a capacity to see the polarisation of light. This new picture explains recent surprising experimental data indicating long lifetimes for the radical pair. Moreover there is a clear evolutionary path toward this field sensing mechanism: it is an enhancement of a weak effect that may be present in many species.Comment: 8 pages, 5 figures, version of final published pape

    Nuclear MET requires ARF and is inhibited by carbon nanodots through binding to phospho-tyrosine in prostate cancer

    Get PDF
    Nuclear receptor tyrosine kinases (nRTKs) are aberrantly upregulated in many types of cancers, but the regulation of nRTK remains unclear. We previously showed androgen deprivation therapy (ADT) induces nMET in castration-resistant prostate cancer (CRPC) specimens. Through gene expression microarray profiles reanalysis, we identified that nMET signaling requires ARF for CRPC growth in Pten/Trp53 conditional knockout mouse model. Accordingly, aberrant MET/nMET elevation correlates with ARF in human prostate cancer (PCa) specimens. Mechanistically, ARF elevates nMET through binding to MET cytoplasmic domain to stabilize MET. Furthermore, carbon nanodots resensitize cancer cells to MET inhibitors through DNA damage response. The inhibition of phosphorylation by carbon nanodots was identified through binding to phosphate group of phospho-tyrosine via computational calculation and experimental assay. Thus, nMET is essential to precision therapy of MET inhibitor. Our findings reveal for the first time that targeting nMET axis by carbon nanodots can be a novel avenue for overcoming drug resistance in cancers especially prostate cancer
    corecore