347 research outputs found

    Therapeutic effect of orally administered microencapsulated oxaliplatin for colorectal cancer

    Get PDF
    Colorectal cancer is a significant source of morbidity and mortality in the United States and other Western countries. Oral delivery of therapeutics remains the most patient accepted form of medication. The development of an oral delivery formulation for local delivery of chemotherapeutics in the gastrointestinal tract can potentially alleviate the adverse side effects including systemic cytotoxicity, as well as focus therapy to the lesions. Here we develop an oral formulation of the chemotherapeutic drug oxaliplatin for the treatment of colorectal cancer. Oxaliplatin was encapsulated in pH sensitive, mucoadhesive chitosan-coated alginate microspheres. The microparticles were formulated to release the chemotherapeutics after passing through the acidic gastric environment thus targeting the intestinal tract. In vivo, these particles substantially reduced the tumor burden in an orthotopic mouse model of colorectal cancer, and reduced mortality.Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship)National Institutes of Health (U.S.)Alnylam Pharmaceuticals (Firm

    Pathology, chemoprevention, and preclinical models for target validation in Barrett esophagus

    Get PDF
    Despite esophageal adenocarcinoma (EAC) being the most widespread among gastrointestinal cancers, with an 11-fold increase in the risk of cancer for patients with Barrett esophagus (BE), its prognosis is still poor. There is a critical need to better perceive the biology of cancer progression and identification of specific targets that are the hallmark of BE's progression. This review explores the established animal models of BE, including genetic, surgical and nonsurgical approaches, potential chemoprevention targets, and the reasoning behind their applications to prevent Barrett-related EAC. The key methodological features in the design feasibility of relevant studies are also discussed. ©2018 American Association for Cancer Research

    A comparison of microfluidic methods for high-throughput cell deformability measurements

    Get PDF
    The mechanical phenotype of a cell is an inherent biophysical marker of its state and function, with many applications in basic and applied biological research. Microfluidics-based methods have enabled single-cell mechanophenotyping at throughputs comparable to those of flow cytometry. Here, we present a standardized cross-laboratory study comparing three microfluidics-based approaches for measuring cell mechanical phenotype: constriction-based deformability cytometry (cDC), shear flow deformability cytometry (sDC) and extensional flow deformability cytometry (xDC). All three methods detect cell deformability changes induced by exposure to altered osmolarity. However, a dose-dependent deformability increase upon latrunculin B-induced actin disassembly was detected only with cDC and sDC, which suggests that when exposing cells to the higher strain rate imposed by xDC, cellular components other than the actin cytoskeleton dominate the response. The direct comparison presented here furthers our understanding of the applicability of the different deformability cytometry methods and provides context for the interpretation of deformability measurements performed using different platforms. This Analysis compares microfluidics-based methods for assessing mechanical properties of cells in high throughput

    Sex-dependent differences in stress-induced depression in Wistar rats are accompanied predominantly by changes in phosphatidylcholines and sphingomyelins

    Full text link
    With a high annual and lifetime prevalence, depression is becoming the leading contributor to the global disease burden. During the COVID-19 crisis, the depression and mood disorders accelerated significantly. Despite the growing evidence, the precise underlying mechanisms of depression disorders (DD) remain unknown. When studying DD in humans, there are many uncontrollable factors such as medication history, age of the patient or living conditions. In this regard, animal models provide an essential step for examining neural circuitry or molecular and cellular pathways in a controlled environment. As far as we know, women have a consistently higher prevalence of DD than men. Thus, the aim of our study was to evaluate sex-related changes in blood metabolites in a model of stress-induced depression in Wistar rats. Pregnant females were stressed using restriction of mobility in the final week of the pregnancy three times a day for 45 minutes each, three following days. After the birth, the progeny aged 60 days was stressed repeatedly. The perturbation in overall energy metabolism as well as in lipid metabolism was found. While in males, phosphatidylcholines (the most phosphatidylcholine with acyl-alkyl residue sum C40:4 - PC ae C40:4), sphingomyelins, and acylcarnitines were changed, in females, lipid metabolism perturbation was seen with the most critical alteration in hydroxysphingomyelin with acyl residue sum C16:1 (SM OH C16:1). Our results confirm that the animal model may be used further in the research of depression. Our results may provide an essential insight into the sex-dependent pathogenesis of depression and contribute to the search for effective treatment and prevention of depression with respect to sex

    The Role of Dysregulated miRNAs in the Pathogenesis, Diagnosis and Treatment of Age-Related Macular Degeneration

    Get PDF
    Age-related macular degeneration (AMD) is an eye disease causing damage to the macular region of the retina where most of the photoreceptors responsible for central visual acuity are located. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that negatively regulate genes by silent post-transcriptional gene expressions. Previous studies have shown that changes in specific miRNAs are involved in the pathogenesis of eye diseases, including AMD. Altered expressions of miRNAs are related to disturbances of regulating oxidative stress, inflammation, angiogenesis, apoptosis and phagocytosis, which are known factors in the pathogenesis of AMD. Moreover, dysregulation of miRNA is involved in drusen formation. Thus, miRNAs may be used as potential molecular biomarkers for the disease and, furthermore, tailoring therapeutics to particular disturbances in miRNAs may, in the future, offer hope to prevent irreversible vision loss. In this review, we clarify the current state of knowledge about the influence of miRNA on the pathogenesis, diagnosis and treatment of AMD. Our study material consisted of publications, which were found in PubMed, Google Scholar and Embase databases using "Age-related macular degeneration", "miRNA", "AMD biomarkers", "miRNA therapeutics" and "AMD pathogenesis" as keywords. Paper search was limited to articles published from 2011 to date. In the section "Retinal, circulating and vitreous body miRNAs found in human studies", we limited the search to studies with patients published in 2016-2021

    Microcondylaea bonellii as a new host for the European bitterling Rhodeus amarus

    Get PDF
    We report for the first time that the freshwater mussel Microcondylaea bonellii (Ferussac, 1827) functions as a suitable host for the European bitterling Rhodeus amarus (Bloch, 1782). Given the recent expansion of R. amarus in Europe, the possible physiological cost (e.g. competition for oxygen, reduction in water circulation, and consequent impairment of filter-feeding) of this interaction may further affect the already poor conservation status of M. bonellii populations.We acknowledge the two anonymous referees for the helpful suggestions that improve the clarity of our manuscript. This research was funded by FCT under project ConBiomics No NORTE-01-0145-FEDER-030286, cofinanced by COMPETE 2020, Portugal 2020 and the European Union through the ERDF

    Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The kynurenine pathway (KP) is the main route of tryptophan degradation in the human body and generates several neuroactive and immunomodulatory metabolites. Altered levels of KP-metabolites have been observed in neuropsychiatric and neurodegenerative disorders as well as in patients with affective disorders. The purpose of the present study was to investigate if skin derived human fibroblasts are useful for studies of expression of enzymes in the KP.</p> <p>Methods</p> <p>Fibroblast cultures were established from cutaneous biopsies taken from the arm of consenting volunteers. Such cultures were subsequently treated with interferon (IFN)-γ 200 U/ml and/or tumor necrosis factor (TNF)-α, 100 U/ml for 48 hours in serum-free medium. Levels of transcripts encoding different enzymes were determined by real-time PCR and levels of kynurenic acid (KYNA) were determined by HPLC.</p> <p>Results</p> <p>At base-line all cultures harbored detectable levels of transcripts encoding KP enzymes, albeit with considerable variation across individuals. Following cytokine treatment, considerable changes in many of the transcripts investigated were observed. For example, increases in the abundance of transcripts encoding indoleamine 2,3-dioxygenase, kynureninase or 3-hydroxyanthranilic acid oxygenase and decreases in the levels of transcripts encoding tryptophan 2,3-dioxygenase, kynurenine aminotransferases or quinolinic acid phosphoribosyltransferase were observed following IFN-γ and TNF-α treatment. Finally, the fibroblast cultures released detectable levels of KYNA in the cell culture medium at base-line conditions, which were increased after IFN-γ, but not TNF-α, treatments.</p> <p>Conclusions</p> <p>All of the investigated genes encoding KP enzymes were expressed in human fibroblasts. Expression of many of these appeared to be regulated in response to cytokine treatment as previously reported for other cell types. Fibroblast cultures, thus, appear to be useful for studies of disease-related abnormalities in the kynurenine pathway of tryptophan degradation.</p

    De novo identification of universal cell mechanics regulators

    Get PDF
    Mechanical proprieties determine many cellular functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors governing cell mechanical phenotype is therefore a subject of great interest. Here we present a mechanomics approach for establishing links between mechanical phenotype changes and the genes involved in driving them. We employ a machine learning-based discriminative network analysis method termed PC-corr to associate cell mechanical states, measured by real-time deformability cytometry (RT-DC), with large-scale transcriptome datasets ranging from stem cell development to cancer progression, and originating from different murine and human tissues. By intersecting the discriminative networks inferred from two selected datasets, we identify a conserved module of five genes with putative roles in the regulation of cell mechanics. We validate the power of the individual genes to discriminate between soft and stiff cell states in silico, and demonstrate experimentally that the top scoring gene, CAV1, changes the mechanical phenotype of cells when silenced or overexpressed. The data-driven approach presented here has the power of de novo identification of genes involved in cell mechanics regulation and paves the way towards engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions

    Concomitant occurrence of EGFR (epidermal growth factor receptor) and KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) mutations in an ALK (anaplastic lymphoma kinase)-positive lung adenocarcinoma patient with acquired resistance to crizotinib: a case report

    Get PDF
    BACKGROUND: Anaplastic lymphoma kinase-positive non-small cell lung carcinoma patients are generally highly responsive to the dual anaplastic lymphoma kinase and MET tyrosine kinase inhibitor crizotinib. However, they eventually acquire resistance to this drug, preventing the anaplastic lymphoma kinase inhibitors from having a prolonged beneficial effect. The molecular mechanisms responsible for crizotinib resistance are beginning to emerge, e.g., in some anaplastic lymphoma kinase-positive non-small cell lung carcinomas the development of secondary mutations in this gene has been described. However, the events behind crizotinib-resistance currently remain largely uncharacterized. Thus, we report on an anaplastic lymphoma kinase-positive non-small cell lung carcinoma patient with concomitant occurrence of epidermal growth factor receptor and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog mutations upon development of crizotinib-resistance. CASE PRESENTATION: A 61-year-old Caucasian never-smoking male was diagnosed with anaplastic lymphoma kinase -positive pulmonary adenocarcinoma, stage T4N3M1b. Treatment with crizotinib initially resulted in complete objective response in the thorax and partial response in the abdomen, but after 8 months of therapy the patient acquired resistance and progressed. Biopsies from new metastases revealed development of epidermal growth factor receptor and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog mutations concomitant with the original anaplastic lymphoma kinase gene rearrangement and without signs of anaplastic lymphoma kinase fusion gene amplification or secondary anaplastic lymphoma kinase mutations. CONCLUSION: To our knowledge, this is the first report of an anaplastic lymphoma kinase-positive pulmonary adenocarcinoma, which upon emergence of crizotinib resistance acquired 2 new somatic mutations in the epidermal growth factor receptor and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog genes, respectively, concomitant with the original anaplastic lymphoma kinase rearrangement. Thus, these 3 driver mutations, usually considered mutually exclusive, may coexist in advanced non-small cell lung carcinoma that becomes resistant to crizotinib, presumably because heterogeneous tumor clones utilize epidermal growth factor receptor and/or V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog signaling to circumvent the inhibition of anaplastic lymphoma kinase-mediated signaling by crizotinib. The identification of new targetable somatic mutations by tumor re-biopsy may help clarify the mechanism behind the development of the acquired crizotinib resistance and pave the way for combined strategies involving multiple targeted therapies

    FAP206 is a Microtubule-Docking Adapter for Ciliary Radial Spoke 2 and Dynein c

    Get PDF
    Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Little is known about the assembly and functions of individual radial spokes. A knockout of the conserved ciliary protein FAP206 in the ciliate Tetrahymena resulted in slow cell motility. Cryo–electron tomography showed that in the absence of FAP206, the 96-nm repeats lacked RS2 and dynein c. Occasionally, RS2 assembled but lacked both the front prong of its microtubule base and dynein c, whose tail is attached to the front prong. Overexpressed GFP-FAP206 decorated nonciliary microtubules in vivo. Thus FAP206 is likely part of the front prong and docks RS2 and dynein c to the microtubule
    corecore