27 research outputs found

    Regenerative peripheral nerve interfaces for real-time, proportional control of a Neuroprosthetic hand

    Full text link
    Abstract Introduction Regenerative peripheral nerve interfaces (RPNIs) are biological constructs which amplify neural signals and have shown long-term stability in rat models. Real-time control of a neuroprosthesis in rat models has not yet been demonstrated. The purpose of this study was to: a) design and validate a system for translating electromyography (EMG) signals from an RPNI in a rat model into real-time control of a neuroprosthetic hand, and; b) use the system to demonstrate RPNI proportional neuroprosthesis control. Methods Animals were randomly assigned to three experimental groups: (1) Control; (2) Denervated, and; (3) RPNI. In the RPNI group, the extensor digitorum longus (EDL) muscle was dissected free, denervated, transferred to the lateral thigh and neurotized with the residual end of the transected common peroneal nerve. Rats received tactile stimuli to the hind-limb via monofilaments, and electrodes were used to record EMG. Signals were filtered, rectified and integrated using a moving sample window. Processed EMG signals (iEMG) from RPNIs were validated against Control and Denervated group outputs. Results Voluntary reflexive rat movements produced signaling that activated the prosthesis in both the Control and RPNI groups, but produced no activation in the Denervated group. Signal-to-Noise ratio between hind-limb movement and resting iEMG was 3.55 for Controls and 3.81 for RPNIs. Both Control and RPNI groups exhibited a logarithmic iEMG increase with increased monofilament pressure, allowing graded prosthetic hand speed control (R2 = 0.758 and R2 = 0.802, respectively). Conclusion EMG signals were successfully acquired from RPNIs and translated into real-time neuroprosthetic control. Signal contamination from muscles adjacent to the RPNI was minimal. RPNI constructs provided reliable proportional prosthetic hand control.https://deepblue.lib.umich.edu/bitstream/2027.42/146521/1/12984_2018_Article_452.pd

    Termino-lateral neurorrhaphy: The functional axonal anatomy

    Full text link
    The goal of this study was to determine the functional axonal anatomy of a termino-lateral neurorrhaphy (TLN). We hypothesize that axons populating a TLN must relinquish functional connections with their original targets prior to establishing new connections via the TLN. Two-month-old F344 rats underwent a TLN between the left peroneal nerve and a nerve graft tunneled to the contralateral hindlimb. Three months postoperatively, an end-to-end neurorrhaphy was performed between the nerve graft and the right peroneal nerve. Four months after the second operation, contractile properties and electromyographic (EMG) signals were measured in the bilateral hindlimbs. Left peroneal nerve stimulation proximal to the TLN site resulted in bilateral extensor digitorum longus (EDL) and tibialis anterior (TA) muscle contractions, with significantly lower forces on the side reinnervated by TLN. Evoked EMGs demonstrated that the right and left hindlimb musculature were electrically discontinuous following TLN. These data support our hypothesis that axons can form functional connections via a TLN, but they must first relinquish functional connections with their original targets. © 2000 Wiley-Liss, Inc. MICROSURGERY 20:6–14 2000Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34923/1/2_ftp.pd

    Development of a Regenerative Peripheral Nerve Interface for Control of a Neuroprosthetic Limb

    No full text
    Background. The purpose of this experiment was to develop a peripheral nerve interface using cultured myoblasts within a scaffold to provide a biologically stable interface while providing signal amplification for neuroprosthetic control and preventing neuroma formation. Methods. A Regenerative Peripheral Nerve Interface (RPNI) composed of a scaffold and cultured myoblasts was implanted on the end of a divided peroneal nerve in rats (n=25). The scaffold material consisted of either silicone mesh, acellular muscle, or acellular muscle with chemically polymerized poly(3,4-ethylenedioxythiophene) conductive polymer. Average implantation time was 93 days. Electrophysiological tests were performed at endpoint to determine RPNI viability and ability to transduce neural signals. Tissue samples were examined using both light microscopy and immunohistochemistry. Results. All implanted RPNIs, regardless of scaffold type, remained viable and displayed robust vascularity. Electromyographic activity and stimulated compound muscle action potentials were successfully recorded from all RPNIs. Physiologic efferent motor action potentials were detected from RPNIs in response to sensory foot stimulation. Histology and transmission electron microscopy revealed mature muscle fibers, axonal regeneration without neuroma formation, neovascularization, and synaptogenesis. Desmin staining confirmed the preservation and maturation of myoblasts within the RPNIs. Conclusions. RPNI demonstrates significant myoblast maturation, innervation, and vascularization without neuroma formation

    In vivo longitudinal study of rodent skeletal muscle atrophy using ultrasonography

    Get PDF
    Muscle atrophy is a widespread ill condition occurring in many diseases, which can reduce quality of life and increase morbidity and mortality. We developed a new method using non-invasive ultrasonography to measure soleus and gastrocnemius lateralis muscle atrophy in the hindlimb-unloaded rat, a well-Accepted model of muscle disuse. Soleus and gastrocnemius volumes were calculated using the conventional truncated-cone method and a newly-designed sinusoidal method. For Soleus muscle, the ultrasonographic volume determined in vivo with either method was linearly correlated to the volume determined ex-vivo from excised muscles as muscle weight-To-density ratio. For both soleus and gastrocnemius muscles, a strong linear correlation was obtained between the ultrasonographic volume and the muscle fiber cross-sectional area determined ex-vivo on muscle cryosections. Thus ultrasonography allowed the longitudinal in vivo evaluation of muscle atrophy progression during hindlimb unloading. This study validates ultrasonography as a powerful method for the evaluation of rodent muscle atrophy in vivo, which would prove useful in disease models and therapeutic trials

    Incisional Herniation Induces Decreased Abdominal Wall Compliance via Oblique Muscle Atrophy and Fibrosis

    No full text
    OBJECTIVE: The purpose of this study is to measure abdominal wall myopathic histologic and mechanical changes during incisional herniation and its effect on incisional hernia repairs. SUMMARY BACKGROUND DATA: Unloaded skeletal muscles undergo characteristic atrophic changes, including change in fiber type composition, decreased cross-sectional area, and pathologic fibrosis. We hypothesize that these atrophic changes decrease muscle elastic properties and may contribute to the high laparotomy wound failure rate observed following incisional hernia repair. METHODS: A rat model of chronic incisional hernia formation was used. Failing midline laparotomy incisions developed into incisional hernias. Controls were uninjured and sham laparotomy (healed) groups. Internal oblique muscles were harvested for fiber typing, measurement of cross-sectional area, collagen deposition, and mechanical analysis. Mesh hernia repairs were performed on a second group of rats with chronic incisional hernias or acute anterior abdominal wall myofascial defects. RESULTS: The hernia group developed lateral abdominal wall shortening and oblique muscle atrophy. This was associated with a change in the distribution of oblique muscle fiber types, decreased cross-sectional area, and pathologic fibrosis consistent with myopathic disuse atrophy. These muscles exhibited significant decreased extensibility and increased stiffness. The healed (sham) laparotomy group expressed an intermediate phenotype between the uninjured and hernia groups. Recurrent hernia formation was most frequent in the chronic hernia model, and hernia repairs mechanically disrupted at a lower force compared with nonherniated abdominal walls. CONCLUSIONS: The internal oblique muscles of the abdominal wall express a pattern of changes consistent with those seen in chronically unloaded skeletal muscles. The internal oblique muscles become fibrotic during herniation, reducing abdominal wall compliance and increasing the transfer of load forces to the midline wound at the time of hernia repair
    corecore