2,061 research outputs found

    Magnetotelluric imaging of anisotropic crust near Fort McMurray, Alberta: implications for engineered geothermal system development

    No full text
    Viability for the development of an engineered geothermal system (EGS) in the oilsands region near Fort McMurray, Alberta, is investigated by studying the structure of the Precambrian basement rocks with magnetotellurics (MT). MT data were collected at 94 broad-band stations on two east–west profiles. Apparent resistivity and phase data showed little variation along each profile. The short period MT data detected a 1-D resistivity structure that could be identified as the shallow sedimentary basin underlain by crystalline basement rocks to a depth of 4–5 km. At lower frequencies a strong directional dependence, large phase splits, and regions of out-of-quadrant (OOQ) phase were detected. 2-D isotropic inversions of these data failed to produce a realistic resistivity model. A detailed dimensionality analysis found links between large phase tensor skews (∼15°), azimuths, OOQ phases and tensor decomposition strike angles at periods greater than 1 s. Low magnitude induction vectors, as well as uniformity of phase splits and phase tensor character between the northern and southern profiles imply that a 3-D analysis is not necessary or appropriate. Therefore, 2-D anisotropic forward modelling was used to generate a resistivity model to interpret the MT data. The preferred model was based on geological observations of outcropping anisotropic mylonitic basement rocks of the Charles Lake shear zone, 150 km to the north, linked to the study area by aeromagnetic and core sample data. This model fits all four impedance tensor elements with an rms misfit of 2.82 on the southern profile, and 3.3 on the northern. The conductive phase causing the anisotropy is interpreted to be interconnected graphite films within the metamorphic basement rocks. Characterizing the anisotropy is important for understanding how artificial fractures, necessary for EGS development, would form. Features of MT data commonly interpreted to be 3-D (e.g. out of OOQ phase and large phase tensor skew) are shown to be interpretable with this 2-D anisotropic model

    Seagrass meadows in a globally changing environment

    Get PDF
    Seagrass meadows are valuable ecosystem service providers that are now being lost globally at an unprecedented rate, with water quality and other localised stressors putting their future viability in doubt. It is therefore critical that we learn more about the interactions between seagrass meadows and future environmental change in the anthropocene. This needs to be with particular reference to the consequences of poor water quality on ecosystem resilience and the effects of change on trophic interactions within the food web. Understanding and predicting the response of seagrass meadows to future environmental change requires an understanding of the natural long-term drivers of change and how these are currently influenced by anthropogenic stress. Conservation management of coastal and marine ecosystems now and in the future requires increased knowledge of how seagrass meadows respond to environmental change, and how they can be managed to be resilient to these changes. Finding solutions to such issues also requires recognising people as part of the social-ecological system. This special issue aims to further enhance this knowledge by bringing together global expertise across this field. The special issues considers issues such as ecosystem service delivery of seagrass meadows, the drivers of long-term seagrass change and the socio-economic consequences of environmental change to seagrass

    pH Sensing by Intracellular Salmonella Induces Effector Translocation

    Get PDF

    The response of the seagrass Halodule wrightii Ascherson to environmental stressors

    Get PDF
    Seagrasses are subjected to intense levels of anthropogenic disturbance as a result of the shallow nearshore waters they inhabit. Some seagrasses are known to have dynamic growth patterns, enabling them to colonize unstable shallow environments and adapt to a range of disturbances. This can result in high levels of variability in morphological and physiological attributes. The seagrass Halodule wrightii is known to be a fast-growing pioneering species with a large geographic range. The present study examines Halodule wrightii in a region under intense anthropogenic stress in order to determine what are the main environmental drivers affecting the morphology, physiology and status of these habitats. Parameters of plant morphology, physiology and status were measured either at the meadow scale (e.g. biochemistry) or at a higher frequency shoot scale (e.g. shoot width). We assigned an impact assessment index to a series of seagrass sites over a gradient of anthropogenic disturbance and found this to be explanatory of a number of the seagrass parameters measured including epiphyte cover, stable isotope δ15N and ETRmax however, it did not clearly explain shoot density, a commonly used bioindicator of environmental stress. At the shoot scale, Principal Component Analysis identified epiphyte and leaf width to have the strongest association. At the meadow scale this was shoot density, dry weight and Ek, albeit with the most impacted sites showing highest shoot density. Stable isotope (δ15N) and leaf length were most significant in explaining the variation between sites and impact category, providing a direct link between anthropogenic sources of nutrients to seagrass meadow density

    Factors affecting decision making in children with complex care needs:a consensus approach to develop best practice in a UK children’s hospital

    Get PDF
    BACKGROUND: Children with complex care needs are a growing proportion of the sick children seen in all healthcare settings in the UK. Complex care needs place demands on parents and professionals who often require many different healthcare teams to work together. Care can be both materially and logistically difficult to manage, causing friction with parents. These difficulties may be reduced if common best practice standards and approaches can be developed in this area. OBJECTIVE: To develop a consensus approach to the management of complexity among healthcare professionals, we used a modified Delphi process. The process consisted of a meeting of clinical leaders to develop candidate statements, followed by two survey rounds open to all professionals in a UK children’s hospital to measure and establish consensus recommendations. RESULTS: Ninety-nine professionals completed both rounds of the survey, 69 statements were agreed. These pertained to seven thematic areas: standardised approaches to communicating with families; processes for interprofessional communication; processes for shared decision-making in the child’s best interests; role of the multidisciplinary team; managing professional–parental disagreement and conflict; the role of clinical psychologists; and staff support. Overall, the level of consensus was high, ranging from agreement to strong agreement. CONCLUSIONS: These statements provide a consensus basis that can inform standardised approaches to the management of complexity. Such approaches may decrease friction between parents, children and healthcare professionals
    • …
    corecore