33 research outputs found

    Genetic Anticipation Is Associated with Telomere Shortening in Hereditary Breast Cancer

    Get PDF
    There is increasing evidence suggesting that short telomeres and subsequent genomic instability contribute to malignant transformation. Telomere shortening has been described as a mechanism to explain genetic anticipation in dyskeratosis congenita and Li-Fraumeni syndrome. Since genetic anticipation has been observed in familial breast cancer, we aimed to study telomere length in familial breast cancer patients and hypothesized that genetic defects causing this disease would affect telomere maintenance resulting in shortened telomeres. Here, we first investigated age anticipation in mother-daughter pairs with breast cancer in 623 breast cancer families, classified as BRCA1, BRCA2, and BRCAX. Moreover, we analyzed telomere length in DNA from peripheral blood leukocytes by quantitative PCR in a set of 198 hereditary breast cancer patients, and compared them with 267 control samples and 71 sporadic breast cancer patients. Changes in telomere length in mother-daughter pairs from breast cancer families and controls were also evaluated to address differences through generations. We demonstrated that short telomeres characterize hereditary but not sporadic breast cancer. We have defined a group of BRCAX families with short telomeres, suggesting that telomere maintenance genes might be susceptibility genes for breast cancer. Significantly, we described that progressive telomere shortening is associated with earlier onset of breast cancer in successive generations of affected families. Our results provide evidence that telomere shortening is associated with earlier age of cancer onset in successive generations, suggesting that it might be a mechanism of genetic anticipation in hereditary breast cancer

    DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence.</p> <p>Methods</p> <p>A set of 4 genes, including <it>CDH1 </it>(E-cadherin), <it>SFN </it>(stratifin), <it>RARB </it>(retinoic acid receptor, beta) and <it>RASSF1A </it>(Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters.</p> <p>Results</p> <p><it>CDH1 </it>and <it>SFN </it>genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between <it>RARB </it>and <it>RASSF1A </it>methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for <it>RARB </it>methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for <it>RASSF1A </it>gene, respectively, in relation to the control group.</p> <p>Conclusion</p> <p>Indistinct DNA hypermethylation of <it>CDH1 </it>and <it>SFN </it>genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, <it>RARB </it>and <it>RASSF1A </it>gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of differentially methylated genes in this neoplasia in order to maximize the diagnostic coverage of epigenetic markers, especially in studies aiming at early recurrence detection.</p

    Expanded DMPK repeats in dizygotic twins referred for diagnosis of autism versus absence of expanded DMPK repeats at screening of 330 children with autism

    No full text
    Zuzana Musova,1 Miroslava Hancarova,1 Marketa Havlovicova,1 Radka Pourova,1 Michal Hrdlicka,2 Josef Kraus,3 Marie Trkova,4 David Stejskal,4 Zdenek Sedlacek1 1Department of Biology and Medical Genetics, 2Department of Child Psychiatry, 3Department of Child Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol, 4Gennet, Centre for Fetal Medicine, Prague, Czech Republic Abstract: Myotonic dystrophy type 1 (DM1) belongs to the broad spectrum of genetic disorders associated with autism spectrum disorders (ASD). ASD were reported predominantly in congenital and early childhood forms of DM1. We describe dizygotic twin boys with ASD who were referred for routine laboratory genetic testing and in whom karyotyping, FMR1 gene testing, and single nucleotide polymorphism array analysis yielded negative results. The father of the boys was later diagnosed with suspected DM1, and testing revealed characteristic DMPK gene expansions in his genome as well as in the genomes of both twins and their elder brother, who also suffered from ASD. In accord with previous reports on childhood forms of DM1, our patients showed prominent neuropsychiatric phenotypes characterized especially by hypotonia, developmental and language delay, emotional and affective lability, lowered adaptability, and social withdrawal. The experience with this family and multiple literature reports of ASD in DM1 on the one side but the lack of literature data on the frequency of DMPK gene expansions in ASD patients on the other side prompted us to screen the DMPK gene in a sample of 330 patients with ASD who were first seen by a geneticist before they were 10 years of age, before the muscular weakness, which may signal DM1, usually becomes obvious. The absence of any DMPK gene expansions in this cohort indicates that targeted DMPK gene testing can be recommended only in ASD patients with specific symptoms or family history suggestive of DM1. Keywords: autism, myotonic dystrophy type 1, DMPK gene, genetic testing, comorbidit
    corecore