1,178 research outputs found

    Memory effects in microscopic traffic models and wide scattering in flow-density data

    Full text link
    By means of microscopic simulations we show that non-instantaneous adaptation of the driving behaviour to the traffic situation together with the conventional measurement method of flow-density data can explain the observed inverse-λ\lambda shape and the wide scattering of flow-density data in ``synchronized'' congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing a new dynamical variable describing the adaptation of drivers to the surrounding traffic situation during the past few minutes (``subjective level of service'') and couple this internal state to parameters of the underlying model that are related to the driving style. % For illustration, we use the intelligent-driver model (IDM) as underlying model, characterize the level of service solely by the velocity and couple the internal variable to the IDM parameter ``netto time gap'', modelling an increase of the time gap in congested traffic (``frustration effect''), that is supported by single-vehicle data. % We simulate open systems with a bottleneck and obtain flow-density data by implementing ``virtual detectors''. Both the shape, relative size and apparent ``stochasticity'' of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.Comment: 8 pages, submitted to Physical Review

    Dimensional Crossover of the Dephasing Time in Disordered Mesoscopic Rings: From Diffusive through Ergodic to 0D Behavior

    Full text link
    We analyze dephasing by electron interactions in a small disordered quasi-one dimensional (1D) ring weakly coupled to leads, where we recently predicted a crossover for the dephasing time \tPh(T) from diffusive or ergodic 1D (\tPh^{-1} \propto T^{2/3}, T^{1}) to 0D0D behavior (\tPh^{-1} \propto T^{2}) as TT drops below the Thouless energy \ETh. We provide a detailed derivation of our results, based on an influence functional for quantum Nyquist noise, and calculate all leading and subleading terms of the dephasing time in the three regimes. Explicitly taking into account the Pauli blocking of the Fermi sea in the metal allows us to describe the 0D0D regime on equal footing as the others. The crossover to 0D0D, predicted by Sivan, Imry and Aronov for 3D systems, has so far eluded experimental observation. We will show that for T \ll \ETh, 0D0D dephasing governs not only the TT-dependence for the smooth part of the magnetoconductivity but also for the amplitude of the Altshuler-Aronov-Spivak oscillations, which result only from electron paths winding around the ring. This observation can be exploited to filter out and eliminate contributions to dephasing from trajectories which do not wind around the ring, which may tend to mask the T2T^{2} behavior. Thus, the ring geometry holds promise of finally observing the crossover to 0D0D experimentally.Comment: in "Perspectives of Mesoscopic Physics - Dedicated to Yoseph Imry's 70th Birthday", edited by Amnon Aharony and Ora Entin-Wohlman (World Scientific, 2010), chap. 20, p. 371-396, ISBN-13 978-981-4299-43-

    Hamilton-like statistics in onedimensional driven dissipative many-particle systems

    Get PDF
    This contribution presents a derivation of the steady-state distribution of velocities and distances of driven particles on a onedimensional periodic ring, using a Fokker-Planck formalism. We will compare two different situations: (i) symmetrical interaction forces fulfilling Newton's law of "actio = reactio” and (ii) asymmetric, forwardly directed interactions as, for example in vehicular traffic. Surprisingly, the steady-state velocity and distance distributions for asymmetric interactions and driving terms agree with the equilibrium distributions of classical many-particle systems with symmetrical interactions, if the system is large enough. This analytical result is confirmed by computer simulations and establishes the possibility of approximating the steady state statistics in driven many-particle systems by Hamiltonian systems. Our finding is also useful to understand the various departure time distributions of queueing systems as a possible effect of interactions among the elements in the respective queue [Physica A 363, 62 (2006)

    Thermal noise and dephasing due to electron interactions in non-trivial geometries

    Full text link
    We study Johnson-Nyquist noise in macroscopically inhomogeneous disordered metals and give a microscopic derivation of the correlation function of the scalar electric potentials in real space. Starting from the interacting Hamiltonian for electrons in a metal and the random phase approximation, we find a relation between the correlation function of the electric potentials and the density fluctuations which is valid for arbitrary geometry and dimensionality. We show that the potential fluctuations are proportional to the solution of the diffusion equation, taken at zero frequency. As an example, we consider networks of quasi-1D disordered wires and give an explicit expression for the correlation function in a ring attached via arms to absorbing leads. We use this result in order to develop a theory of dephasing by electronic noise in multiply-connected systems.Comment: 9 pages, 6 figures (version submitted to PRB

    Calibrating Car-Following Models using Trajectory Data: Methodological Study

    Full text link
    The car-following behavior of individual drivers in real city traffic is studied on the basis of (publicly available) trajectory datasets recorded by a vehicle equipped with an radar sensor. By means of a nonlinear optimization procedure based on a genetic algorithm, we calibrate the Intelligent Driver Model and the Velocity Difference Model by minimizing the deviations between the observed driving dynamics and the simulated trajectory when following the same leading vehicle. The reliability and robustness of the nonlinear fits are assessed by applying different optimization criteria, i.e., different measures for the deviations between two trajectories. The obtained errors are in the range between~11% and~29% which is consistent with typical error ranges obtained in previous studies. In addition, we found that the calibrated parameter values of the Velocity Difference Model strongly depend on the optimization criterion, while the Intelligent Driver Model is more robust in this respect. By applying an explicit delay to the model input, we investigated the influence of a reaction time. Remarkably, we found a negligible influence of the reaction time indicating that drivers compensate for their reaction time by anticipation. Furthermore, the parameter sets calibrated to a certain trajectory are applied to the other trajectories allowing for model validation. The results indicate that ``intra-driver variability'' rather than ``inter-driver variability'' accounts for a large part of the calibration errors. The results are used to suggest some criteria towards a benchmarking of car-following models

    Theoretical vs. empirical classification and prediction of congested traffic states

    Get PDF
    Starting from the instability diagram of a traffic flow model, we derive conditions for the occurrence of congested traffic states, their appearance, their spreading in space and time, and the related increase in travel times. We discuss the terminology of traffic phases and give empirical evidence for the existence of a phase diagram of traffic states. In contrast to previously presented phase diagrams, it is shown that "widening synchronized patterns” are possible, if the maximum flow is located inside of a metastable density regime. Moreover, for various kinds of traffic models with different instability diagrams it is discussed, how the related phase diagrams are expected to approximately look like. Apart from this, it is pointed out that combinations of on- and off-ramps create different patterns than a single, isolated on-ram

    Quantum dynamics of the avian compass

    Full text link
    The ability of migratory birds to orient relative to the Earth's magnetic field is believed to involve a coherent superposition of two spin states of a radical electron pair. However, the mechanism by which this coherence can be maintained in the face of strong interactions with the cellular environment has remained unclear. This Letter addresses the problem of decoherence between two electron spins due to hyperfine interaction with a bath of spin 1/2 nuclei. Dynamics of the radical pair density matrix are derived and shown to yield a simple mechanism for sensing magnetic field orientation. Rates of dephasing and decoherence are calculated ab initio and found to yield millisecond coherence times, consistent with behavioral experiments
    • …
    corecore