1,178 research outputs found
Memory effects in microscopic traffic models and wide scattering in flow-density data
By means of microscopic simulations we show that non-instantaneous adaptation
of the driving behaviour to the traffic situation together with the
conventional measurement method of flow-density data can explain the observed
inverse- shape and the wide scattering of flow-density data in
``synchronized'' congested traffic. We model a memory effect in the response of
drivers to the traffic situation for a wide class of car-following models by
introducing a new dynamical variable describing the adaptation of drivers to
the surrounding traffic situation during the past few minutes (``subjective
level of service'') and couple this internal state to parameters of the
underlying model that are related to the driving style. % For illustration, we
use the intelligent-driver model (IDM) as underlying model, characterize the
level of service solely by the velocity and couple the internal variable to the
IDM parameter ``netto time gap'', modelling an increase of the time gap in
congested traffic (``frustration effect''), that is supported by single-vehicle
data. % We simulate open systems with a bottleneck and obtain flow-density data
by implementing ``virtual detectors''. Both the shape, relative size and
apparent ``stochasticity'' of the region of the scattered data points agree
nearly quantitatively with empirical data. Wide scattering is even observed for
identical vehicles, although the proposed model is a time-continuous,
deterministic, single-lane car-following model with a unique fundamental
diagram.Comment: 8 pages, submitted to Physical Review
Dimensional Crossover of the Dephasing Time in Disordered Mesoscopic Rings: From Diffusive through Ergodic to 0D Behavior
We analyze dephasing by electron interactions in a small disordered quasi-one
dimensional (1D) ring weakly coupled to leads, where we recently predicted a
crossover for the dephasing time \tPh(T) from diffusive or ergodic 1D
(\tPh^{-1} \propto T^{2/3}, T^{1}) to behavior (\tPh^{-1} \propto
T^{2}) as drops below the Thouless energy \ETh. We provide a detailed
derivation of our results, based on an influence functional for quantum Nyquist
noise, and calculate all leading and subleading terms of the dephasing time in
the three regimes. Explicitly taking into account the Pauli blocking of the
Fermi sea in the metal allows us to describe the regime on equal footing
as the others. The crossover to , predicted by Sivan, Imry and Aronov for
3D systems, has so far eluded experimental observation. We will show that for
T \ll \ETh, dephasing governs not only the -dependence for the smooth
part of the magnetoconductivity but also for the amplitude of the
Altshuler-Aronov-Spivak oscillations, which result only from electron paths
winding around the ring. This observation can be exploited to filter out and
eliminate contributions to dephasing from trajectories which do not wind around
the ring, which may tend to mask the behavior. Thus, the ring geometry
holds promise of finally observing the crossover to experimentally.Comment: in "Perspectives of Mesoscopic Physics - Dedicated to Yoseph Imry's
70th Birthday", edited by Amnon Aharony and Ora Entin-Wohlman (World
Scientific, 2010), chap. 20, p. 371-396, ISBN-13 978-981-4299-43-
Hamilton-like statistics in onedimensional driven dissipative many-particle systems
This contribution presents a derivation of the steady-state distribution of velocities and distances of driven particles on a onedimensional periodic ring, using a Fokker-Planck formalism. We will compare two different situations: (i) symmetrical interaction forces fulfilling Newton's law of "actio = reactio” and (ii) asymmetric, forwardly directed interactions as, for example in vehicular traffic. Surprisingly, the steady-state velocity and distance distributions for asymmetric interactions and driving terms agree with the equilibrium distributions of classical many-particle systems with symmetrical interactions, if the system is large enough. This analytical result is confirmed by computer simulations and establishes the possibility of approximating the steady state statistics in driven many-particle systems by Hamiltonian systems. Our finding is also useful to understand the various departure time distributions of queueing systems as a possible effect of interactions among the elements in the respective queue [Physica A 363, 62 (2006)
Thermal noise and dephasing due to electron interactions in non-trivial geometries
We study Johnson-Nyquist noise in macroscopically inhomogeneous disordered
metals and give a microscopic derivation of the correlation function of the
scalar electric potentials in real space. Starting from the interacting
Hamiltonian for electrons in a metal and the random phase approximation, we
find a relation between the correlation function of the electric potentials and
the density fluctuations which is valid for arbitrary geometry and
dimensionality. We show that the potential fluctuations are proportional to the
solution of the diffusion equation, taken at zero frequency. As an example, we
consider networks of quasi-1D disordered wires and give an explicit expression
for the correlation function in a ring attached via arms to absorbing leads. We
use this result in order to develop a theory of dephasing by electronic noise
in multiply-connected systems.Comment: 9 pages, 6 figures (version submitted to PRB
Calibrating Car-Following Models using Trajectory Data: Methodological Study
The car-following behavior of individual drivers in real city traffic is
studied on the basis of (publicly available) trajectory datasets recorded by a
vehicle equipped with an radar sensor. By means of a nonlinear optimization
procedure based on a genetic algorithm, we calibrate the Intelligent Driver
Model and the Velocity Difference Model by minimizing the deviations between
the observed driving dynamics and the simulated trajectory when following the
same leading vehicle. The reliability and robustness of the nonlinear fits are
assessed by applying different optimization criteria, i.e., different measures
for the deviations between two trajectories. The obtained errors are in the
range between~11% and~29% which is consistent with typical error ranges
obtained in previous studies. In addition, we found that the calibrated
parameter values of the Velocity Difference Model strongly depend on the
optimization criterion, while the Intelligent Driver Model is more robust in
this respect. By applying an explicit delay to the model input, we investigated
the influence of a reaction time. Remarkably, we found a negligible influence
of the reaction time indicating that drivers compensate for their reaction time
by anticipation. Furthermore, the parameter sets calibrated to a certain
trajectory are applied to the other trajectories allowing for model validation.
The results indicate that ``intra-driver variability'' rather than
``inter-driver variability'' accounts for a large part of the calibration
errors. The results are used to suggest some criteria towards a benchmarking of
car-following models
Recommended from our members
Designing and Adapting Service-based Systems: A Service Discovery Framework
This chapter describes a service discovery framework that has been developed within the EU 6th Framework projects SeCSE and Gredia. The framework supports design of service-based systems based on existing services and adaptation of service based systems during their execution due to different situations. It assumes services described from different perspectives and uses complex service discovery queries specified in a XML-based language that we have developed. The work is illustrated with the Cell Phone Operator case study
Theoretical vs. empirical classification and prediction of congested traffic states
Starting from the instability diagram of a traffic flow model, we derive conditions for the occurrence of congested traffic states, their appearance, their spreading in space and time, and the related increase in travel times. We discuss the terminology of traffic phases and give empirical evidence for the existence of a phase diagram of traffic states. In contrast to previously presented phase diagrams, it is shown that "widening synchronized patterns” are possible, if the maximum flow is located inside of a metastable density regime. Moreover, for various kinds of traffic models with different instability diagrams it is discussed, how the related phase diagrams are expected to approximately look like. Apart from this, it is pointed out that combinations of on- and off-ramps create different patterns than a single, isolated on-ram
Quantum dynamics of the avian compass
The ability of migratory birds to orient relative to the Earth's magnetic
field is believed to involve a coherent superposition of two spin states of a
radical electron pair. However, the mechanism by which this coherence can be
maintained in the face of strong interactions with the cellular environment has
remained unclear. This Letter addresses the problem of decoherence between two
electron spins due to hyperfine interaction with a bath of spin 1/2 nuclei.
Dynamics of the radical pair density matrix are derived and shown to yield a
simple mechanism for sensing magnetic field orientation. Rates of dephasing and
decoherence are calculated ab initio and found to yield millisecond coherence
times, consistent with behavioral experiments
- …