853 research outputs found

    Policy implications of meeting the 2C climate target

    Get PDF
    The inherently global nature of shipping has (certainly in the past half century) dictated the regulation of the shipping sector. Both the IMO and the ICS have affirmed their position that the regulation of shipping must, first and foremost, be the responsibility of agents at the global multilateral level. One interpretation of this is that shipping should be viewed akin to a sovereign nation in its own right. This position has significant implications for the responsibility of the sector as a whole in responding to the challenges posed by climate change. In the first instance, both the IMO and the ICS have established that the shipping industry is committed to its responsibility for reducing its carbon emissions, however it is also asserted that any response must be proportionate to shipping’s share of the total global emissions. Mitigating against dangerous climate change has conventionally been associated with maintaining temperature rise at least under a 2°C threshold, and that framing is also used in this paper. Scenarios of future shipping greenhouse gas (GHG) emissions suggest that under current policy, shipping emissions are expected to rise significantly – by 50 to 250% (IMO 3rd GHG study, 2014). This paper follows from the work of Smith et al (2015) presented in MEPC 68 that explores alternatives to the current expectations of shipping’s CO2. The shipping system model GloTraM is used to generate future scenarios up to 2050 under current policy, an imposed bunker levy, and under a cap and trade emission trading scheme with the cap set to shipping achieving a consistent proporition of the overall 2°C emission budget. The impact of these different scenarios on fuel mix, technology, EEOI and carbon price is then explored

    Emissions budgets for shipping in a 2°C and a 4°C global warming scenario, and implications for operational efficiency

    Get PDF
    To achieve the widely accepted goal of keeping global temperature rise below 2°C above pre-industrial levels, greenhouse gas emissions must reduce drastically over the coming decades. Under this premise, the assumption that the shipping industry realises the same proportionate CO2 emission reductions as all other sectors on average has strong implications. This paper begins by considering an appropriate global CO2 emissions budget associated with a temperature rise of 2°C. Next, a range of future demand scenarios for international transport shipping are presented. Meeting the demand in any of the scenarios, while remaining within the emissions budget, requires stringent increases in overall operational efficiency. Different emissions and efficiency trajectories – with efficiency expressed in terms of the Energy Efficiency Operational Indicator (EEOI) – in line with the 2°C target are analysed. The potential short and long term levers of operational efficiency are explored

    Solution processed amorphous silicon surface passivation layers

    Get PDF
    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X ray and constant final state yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120 meV and 200 meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37 ms at an injection level of 1015 cm3 enabling an implied open circuit voltage of 724 mV was achieved, demonstrating excellent silicon surface passivatio

    Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes

    Get PDF
    AbstractWind is a renewable energy source that is freely available on the world’s oceans. As shipping faces the challenge of reducing its dependence on fossil fuels and cutting its carbon emissions this paper seeks to explore the potential for harnessing wind power for shipping. Numerical models of two wind power technologies, a Flettner rotor and a towing kite, are linked with wind data along a set of five trade routes. Wind-generated thrust and propulsive power are computed as a function of local wind and ship velocity. The average wind power contribution on a given route ranges between 193kW and 373kW for a single Flettner rotor and between 127kW and 461kW for the towing kite. The variability of the power output from the Flettner rotor is shown to be smaller than that from the towing kite while, due to the different dependencies on wind speed and direction, the average power contribution from a Flettner rotor is higher than that from the kite on some routes and lower on others. While for most forms of international cargo shipping wind may not be suitable as the sole source of propulsive energy, a comparison of average output to main engine power requirements of typical vessels serving the routes indicates that it could deliver a significant share. For instance, installing three Flettner rotors on a 5500dwt general cargo carrier could, on average, provide more than half of the power required by the main engine under typical slow steaming conditions. Uncertainties and simplifying assumptions underlying the model analysis are discussed and implications of the results are considered in light of the urgent need for decarbonisation. This paper demonstrates the significant opportunities for step jump emissions reductions that wind technologies have to offer. It outlines next steps towards realising the potential, highlighting a demand for more detailed studies on socio-economic and technical barriers to implementation, and providing a basis for research into step-change emissions reductions in the shipping sector

    Pilot Study Protocol of a Mhealth Self‐Management Intervention for Family Members of Pediatric Transplant Recipients

    Get PDF
    Solid‐organ transplantation is the treatment of choice for end‐stage organ failure. Parents of pediatric transplant recipients who reported a lack of readiness for discharge had more difficulty coping and managing their child\u27s medically complex care at home. In this paper, we describe the protocol for the pilot study of a mHealth intervention (myFAMI). The myFAMI intervention is based on the Individual and Family Self‐Management Theory and focuses on family self‐management of pediatric transplant recipients at home. The purpose of the pilot study is to test the feasibility of the myFAMI intervention with family members of pediatric transplant recipients and to test the preliminary efficacy on postdischarge coping through a randomized controlled trial. The sample will include 40 family units, 20 in each arm of the study, from three pediatric transplant centers in the United States. Results from this study may advance nursing science by providing insight for the use of mHealth to facilitate patient/family–nurse communication and family self‐management behaviors for family members of pediatric transplant recipients

    Motor Cortical Network Plasticity in Patients With Recurrent Brain Tumors

    Get PDF
    Objective: The adult brain’s potential for plastic reorganization is an important mechanism for the preservation and restoration of function in patients with primary glial neoplasm. Patients with recurrent brain tumors requiring multiple interventions over time present an opportunity to examine brain reorganization. Magnetoencephalography (MEG) is a noninvasive imaging modality that can be used for motor cortical network mapping which, when performed at regular intervals, offers insight into this process of reorganization. Utilizing MEG-based motor mapping, we sought to characterize the reorganization of motor cortical networks over time in a cohort of 78 patients with recurrent glioma. Methods: MEG-based motor cortical maps were obtained by measuring event-related desynchronization (ERD) in ß-band frequency during unilateral index finger flexion. Each patient presented at our Department at least on two occasions for tumor resection due to tumor recurrence, and MEG-based motor mapping was performed as part of preoperative assessment before each surgical resection. Whole-brain activation patterns from first to second MEG scan (obtained before first and second surgery) were compared. Additionally, we calculated distances of activation peaks, which represent the location of the primary motor cortex (MC), to determine the magnitude of movement in motor eloquent areas between the first and second MEG scan. We also explored which demographic, anatomic, and pathological factors influence these shifts. Results: The whole-brain activation motor maps showed a subtle movement of the primary MC from first to second timepoint, as was confirmed by the determination of motor activation peaks. The shift of ipsilesional MC was directly correlated with a frontal-parietal tumor location (p < 0.001), presence of motor deficits (p = 0.021), and with a longer period between MEG scans (p = 0.048). Also, a disengagement of wide areas in the contralesional (ipsilateral to finger movement) hemisphere at the second time point was observed. Conclusions: MEG imaging is a sensitive method for depicting the plasticity of the motor cortical network. Although the location of the primary MC undergoes only subtle changes, appreciable shifts can occur in the setting of a stronger and longer impairment of the tumor on the MC. The ipsilateral hemisphere may serve as a reservoir for functional recovery

    CO2 abatement goals for international shipping

    Get PDF
    The Paris Agreement, which entered into force in 2016, sets the ambitious climate change mitigation goal of limiting the global temperature increase to below 2°C and ideally 1.5°C. This puts a severe constraint on the remaining global GHG emissions budget. While international shipping is also a contributor to anthropogenic GHG emissions, and CO2 in particular, it is not included in the Paris Agreement. This article discusses how a share of a global CO2 budget over the twenty-first century could be apportioned to international shipping, and, using a range of future trade scenarios, explores the requisite cuts to the CO2 intensity of shipping. The results demonstrate that, under a wide range of assumptions, existing short-term levers of efficiency must be urgently exploited to achieve mitigation commensurate with that required from the rest of the economy, with virtually full decarbonization of international shipping required as early as before mid-century

    Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2°C

    Get PDF
    Limiting warming to well below 2°C requires rapid and complete decarbonisation of energy systems. We compare economy-wide modelling of 1.5°C and 2°C scenarios with sector-focused analyses of four critical sectors that are difficult to decarbonise: aviation, shipping, road freight transport, and industry. We develop and apply a novel framework to analyse and track mitigation progress in these sectors. We find that emission reductions in the 1.5°C and 2°C scenarios of the IMAGE model come from deep cuts in CO2 intensities and lower energy intensities, with minimal demand reductions in these sectors’ activity. We identify a range of additional measures and policy levers that are not explicitly captured in modelled scenarios but could contribute significant emission reductions. These are demand reduction options, and include less air travel (aviation), reduced transportation of fossil fuels (shipping), more locally produced goods combined with high load factors (road freight), and a shift to a circular economy (industry). We discuss the challenges of reducing demand both for economy-wide modelling and for policy. Based on our sectoral analysis framework, we suggest modelling improvements and policy recommendations, calling on the relevant UN agencies to start tracking mitigation progress through monitoring key elements of the framework (CO2 intensity, energy efficiency, and demand for sectoral activity, as well as the underlying drivers), as a matter of urgency

    Technologies for the global energy transition

    Get PDF
    The availability of reliable, affordable and mature technologies is at the basis of an effective decarbonization strategy, that should be in turn supported by timely and accurate policies. Due to the large differences across sectors and countries, there is no silver bullet to support decarbonization, but a combination of multiple technologies will be required to reach the challenging goal of decarbonizing the energy sector. This chapter presents a focus on the current technological solutions that are available in four main sectors: power generation, industry, transport and buildings. The aim of this work is to highlight the main strengths and weaknesses of the current technologies, to help the reader in understanding which are the main opportunities and challenges related to the development and deployment of each of them, as well as their potential contribution to the decarbonization targets. The chapter also provides strategies and policy recommendations from a technology point of view on how to decarbonize the global energy systems by mid-century and of the necessity to take a systems approach
    • 

    corecore