891 research outputs found
Market Structure and Entry: Where's the Beef?.
We study the effects of market structure on entry using data from the UK fast food (counter-service burger)industry over the years 1991-1995. Over this period, the market can be characterized as a duopoly. We find that market structure matters greatly: for both firms, rival presence increases the probability of entry. We control for market specific time-invariant unobservable and their correlation with existing outlets of both firms through a variety of methods.LEARNING ; MARKET ; DUOPOLY
Linear response strength functions with iterative Arnoldi diagonalization
We report on an implementation of a new method to calculate RPA strength
functions with iterative non-hermitian Arnoldi diagonalization method, which
does not explicitly calculate and store the RPA matrix. We discuss the
treatment of spurious modes, numerical stability, and how the method scales as
the used model space is enlarged. We perform the particle-hole RPA benchmark
calculations for double magic nucleus 132Sn and compare the resulting
electromagnetic strength functions against those obtained within the standard
RPA.Comment: 9 RevTeX pages, 11 figures, submitted to Physical Review
Study of odd-mass N=82 isotones with realistic effective interactions
The microscopic quasiparticle-phonon model, MQPM, is used to study the energy
spectra of the odd , N=82 isotones. The results are compared with
experimental data, with the extreme quasiparticle-phonon limit and with the
results of an unrestricted shell model (SM)
calculation. The interaction used in these calculations is a realistic two-body
G-matrix interaction derived from modern meson-exchange potential models for
the nucleon-nucleon interaction. For the shell model all the two-body matrix
elements are renormalized by the -box method whereas for the MQPM the
effective interaction is defined by the G-matrix.Comment: Elsevier latex style espart, 26 pages, submitted to Nuclear Physics
Growing Two-Sided Networks by Advertising the User Base: A Field Experiment
Two-sided exchange networks (such as eBay.com) often advertise their number of users, presumably to encourage further participation. However, these networks differ markedly on how they advertise their user base. Some highlight the number of sellers, some emphasize the number of buyers, and others disclose both. We use field experiment data from a business-to-business website to examine the efficacy of these different display formats. Before each potential seller posted a listing, the website randomized whether to display the number of buyers and/or sellers, and if so, how many buyers and/or sellers to claim. We find that when information about both buyers and sellers is displayed, a large number of sellers deters further seller listings. However, this deterrence effect disappears when only the number of sellers is presented. Similarly, a large number of buyers is more likely to attract new listings when it is displayed together with the number of sellers. These results suggest the presence of indirect network externalities, whereby a seller prefers markets with many other sellers because they help attract more buyers
Non-collapsing renormalized QRPA with proton-neutron pairing for neutrinoless double beta decay
Using the renormalized quasiparticle random phase approximation (RQRPA), we
calculate the light neutrino mass mediated mode of neutrinoless double beta
decay of Ge76, Mo100, Te128 and Te130. Our results indicate that the simple
quasiboson approximation is not good enough to study the neutrinoless double
beta decay, because its solutions collapse for physical values of g_pp. We find
that extension of the Hilbert space and inclusion of the Pauli Principle in the
QRPA with proton-neutron pairing, allows us to extend our calculations beyond
the point of collapse, for physical values of the nuclear force strength. As a
consequence one might be able to extract more accurate values on the effective
neutrino mass by using the best available experimental limits on the half-life
of neutrinoless double beta decay.Comment: 15 pages, RevTex, 2 Postscript figures, to appear in Phys. Lett.
Extension of random-phase approximation preserving energy weighted sum rules: an application to a 3-level Lipkin model
A limitation common to all extensions of random-phase approximation including
only particle-hole configurations is that they violate to some extent the
energy weighted sum rules. Considering one such extension, the improved RPA
(IRPA), already used to study the electronic properties of metallic clusters,
we show how it can be generalized in order to eliminate this drawback. This is
achieved by enlarging the configuration space, including also elementary
excitations corresponding to the annihilation of a particle (hole) and the
creation of another particle (hole) on the correlated ground state. The
approach is tested within a solvable 3-level model.Comment: 2 figure
Study of the effect of neutrino oscillation on the supernova neutrino signal with the LVD detector
We present an update of our previous study (astro-ph/0112312) on how
oscillations affect the signal from a supernova core collapse observed in the
LVD detector at LNGS. In this paper we use a recent, more precise determination
of the cross section (astro-ph/0302055) to calculate the expected number of
inverse beta decay events, we introduce in the simulation also the -{\rm
Fe} interactions, we include the Earth matter effects and, finally, we study
also the inverted mass hierarchy case.Comment: 4 pages, 4 figures, to appear in the Proceedings of ICRC 200
Neutron-Proton Correlations in an Exactly Solvable Model
We examine isovector and isoscalar neutron-proton correlations in an exactly
solvable model based on the algebra SO(8). We look particularly closely at
Gamow-Teller strength and double beta decay, both to isolate the effects of the
two kinds of pairing and to test two approximation schemes: the renormalized
neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing
correlations become strong enough a phase transition occurs and the dependence
of the Gamow-Teller beta+ strength on isospin changes in a dramatic and
unfamiliar way, actually increasing as neutrons are added to an N=Z core.
Renormalization eliminates the well-known instabilities that plague the QRPA as
the phase transition is approached, but only by unnaturally suppressing the
isoscalar correlations. Generalized BCS theory, on the other hand, reproduces
the Gamow-Teller strength more accurately in the isoscalar phase than in the
usual isovector phase, even though its predictions for energies are equally
good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar
side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe
Dyson Equation Approach to Many-Body Greens Functions and Self-Consistent RPA, First Application to the Hubbard Model
An approach for particle-hole correlation functions, based on the so-called
SCRPA, is developed. This leads to a fully self-consistent RPA-like theory
which satisfies the -sum rule and several other theorems. As a first step, a
simpler self-consistent approach, the renormalized RPA, is solved numerically
in the one-dimensional Hubbard model. The charge and the longitudinal spin
susceptibility, the momentum distribution and several ground state properties
are calculated and compared with the exact results. Especially at half filling,
our approach provides quite promising results and matches the exact behaviour
apart from a general prefactor. The strong coupling limit of our approach can
be described analytically.Comment: 35 pages, 18 Figures, Feynman diagrams as 10 additional eps-files,
revised and enhanced version, accepted in Phys. Rev.
- …
