891 research outputs found

    Market Structure and Entry: Where's the Beef?.

    Get PDF
    We study the effects of market structure on entry using data from the UK fast food (counter-service burger)industry over the years 1991-1995. Over this period, the market can be characterized as a duopoly. We find that market structure matters greatly: for both firms, rival presence increases the probability of entry. We control for market specific time-invariant unobservable and their correlation with existing outlets of both firms through a variety of methods.LEARNING ; MARKET ; DUOPOLY

    Linear response strength functions with iterative Arnoldi diagonalization

    Full text link
    We report on an implementation of a new method to calculate RPA strength functions with iterative non-hermitian Arnoldi diagonalization method, which does not explicitly calculate and store the RPA matrix. We discuss the treatment of spurious modes, numerical stability, and how the method scales as the used model space is enlarged. We perform the particle-hole RPA benchmark calculations for double magic nucleus 132Sn and compare the resulting electromagnetic strength functions against those obtained within the standard RPA.Comment: 9 RevTeX pages, 11 figures, submitted to Physical Review

    Study of odd-mass N=82 isotones with realistic effective interactions

    Get PDF
    The microscopic quasiparticle-phonon model, MQPM, is used to study the energy spectra of the odd Z=5363Z=53 - 63, N=82 isotones. The results are compared with experimental data, with the extreme quasiparticle-phonon limit and with the results of an unrestricted 2s1d0g7/20h11/22s1d0g_{7/2}0h_{11/2} shell model (SM) calculation. The interaction used in these calculations is a realistic two-body G-matrix interaction derived from modern meson-exchange potential models for the nucleon-nucleon interaction. For the shell model all the two-body matrix elements are renormalized by the Q^\hat{Q}-box method whereas for the MQPM the effective interaction is defined by the G-matrix.Comment: Elsevier latex style espart, 26 pages, submitted to Nuclear Physics

    Growing Two-Sided Networks by Advertising the User Base: A Field Experiment

    Get PDF
    Two-sided exchange networks (such as eBay.com) often advertise their number of users, presumably to encourage further participation. However, these networks differ markedly on how they advertise their user base. Some highlight the number of sellers, some emphasize the number of buyers, and others disclose both. We use field experiment data from a business-to-business website to examine the efficacy of these different display formats. Before each potential seller posted a listing, the website randomized whether to display the number of buyers and/or sellers, and if so, how many buyers and/or sellers to claim. We find that when information about both buyers and sellers is displayed, a large number of sellers deters further seller listings. However, this deterrence effect disappears when only the number of sellers is presented. Similarly, a large number of buyers is more likely to attract new listings when it is displayed together with the number of sellers. These results suggest the presence of indirect network externalities, whereby a seller prefers markets with many other sellers because they help attract more buyers

    Non-collapsing renormalized QRPA with proton-neutron pairing for neutrinoless double beta decay

    Get PDF
    Using the renormalized quasiparticle random phase approximation (RQRPA), we calculate the light neutrino mass mediated mode of neutrinoless double beta decay of Ge76, Mo100, Te128 and Te130. Our results indicate that the simple quasiboson approximation is not good enough to study the neutrinoless double beta decay, because its solutions collapse for physical values of g_pp. We find that extension of the Hilbert space and inclusion of the Pauli Principle in the QRPA with proton-neutron pairing, allows us to extend our calculations beyond the point of collapse, for physical values of the nuclear force strength. As a consequence one might be able to extract more accurate values on the effective neutrino mass by using the best available experimental limits on the half-life of neutrinoless double beta decay.Comment: 15 pages, RevTex, 2 Postscript figures, to appear in Phys. Lett.

    Extension of random-phase approximation preserving energy weighted sum rules: an application to a 3-level Lipkin model

    Full text link
    A limitation common to all extensions of random-phase approximation including only particle-hole configurations is that they violate to some extent the energy weighted sum rules. Considering one such extension, the improved RPA (IRPA), already used to study the electronic properties of metallic clusters, we show how it can be generalized in order to eliminate this drawback. This is achieved by enlarging the configuration space, including also elementary excitations corresponding to the annihilation of a particle (hole) and the creation of another particle (hole) on the correlated ground state. The approach is tested within a solvable 3-level model.Comment: 2 figure

    Study of the effect of neutrino oscillation on the supernova neutrino signal with the LVD detector

    Full text link
    We present an update of our previous study (astro-ph/0112312) on how ν\nu oscillations affect the signal from a supernova core collapse observed in the LVD detector at LNGS. In this paper we use a recent, more precise determination of the cross section (astro-ph/0302055) to calculate the expected number of inverse beta decay events, we introduce in the simulation also the ν\nu-{\rm Fe} interactions, we include the Earth matter effects and, finally, we study also the inverted mass hierarchy case.Comment: 4 pages, 4 figures, to appear in the Proceedings of ICRC 200

    Neutron-Proton Correlations in an Exactly Solvable Model

    Get PDF
    We examine isovector and isoscalar neutron-proton correlations in an exactly solvable model based on the algebra SO(8). We look particularly closely at Gamow-Teller strength and double beta decay, both to isolate the effects of the two kinds of pairing and to test two approximation schemes: the renormalized neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing correlations become strong enough a phase transition occurs and the dependence of the Gamow-Teller beta+ strength on isospin changes in a dramatic and unfamiliar way, actually increasing as neutrons are added to an N=Z core. Renormalization eliminates the well-known instabilities that plague the QRPA as the phase transition is approached, but only by unnaturally suppressing the isoscalar correlations. Generalized BCS theory, on the other hand, reproduces the Gamow-Teller strength more accurately in the isoscalar phase than in the usual isovector phase, even though its predictions for energies are equally good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe

    Dyson Equation Approach to Many-Body Greens Functions and Self-Consistent RPA, First Application to the Hubbard Model

    Full text link
    An approach for particle-hole correlation functions, based on the so-called SCRPA, is developed. This leads to a fully self-consistent RPA-like theory which satisfies the ff-sum rule and several other theorems. As a first step, a simpler self-consistent approach, the renormalized RPA, is solved numerically in the one-dimensional Hubbard model. The charge and the longitudinal spin susceptibility, the momentum distribution and several ground state properties are calculated and compared with the exact results. Especially at half filling, our approach provides quite promising results and matches the exact behaviour apart from a general prefactor. The strong coupling limit of our approach can be described analytically.Comment: 35 pages, 18 Figures, Feynman diagrams as 10 additional eps-files, revised and enhanced version, accepted in Phys. Rev.
    corecore