712 research outputs found
Memory Aware Synapses: Learning what (not) to forget
Humans can learn in a continuous manner. Old rarely utilized knowledge can be
overwritten by new incoming information while important, frequently used
knowledge is prevented from being erased. In artificial learning systems,
lifelong learning so far has focused mainly on accumulating knowledge over
tasks and overcoming catastrophic forgetting. In this paper, we argue that,
given the limited model capacity and the unlimited new information to be
learned, knowledge has to be preserved or erased selectively. Inspired by
neuroplasticity, we propose a novel approach for lifelong learning, coined
Memory Aware Synapses (MAS). It computes the importance of the parameters of a
neural network in an unsupervised and online manner. Given a new sample which
is fed to the network, MAS accumulates an importance measure for each parameter
of the network, based on how sensitive the predicted output function is to a
change in this parameter. When learning a new task, changes to important
parameters can then be penalized, effectively preventing important knowledge
related to previous tasks from being overwritten. Further, we show an
interesting connection between a local version of our method and Hebb's
rule,which is a model for the learning process in the brain. We test our method
on a sequence of object recognition tasks and on the challenging problem of
learning an embedding for predicting triplets.
We show state-of-the-art performance and, for the first time, the ability to
adapt the importance of the parameters based on unlabeled data towards what the
network needs (not) to forget, which may vary depending on test conditions.Comment: ECCV 201
Evaluation of laser range-finder mapping for agricultural spraying vehicles
In this paper, we present a new application of laser range-finder sensing to agricultural spraying vehicles. The current generation of spraying vehicles use automatic controllers to maintain the height of the sprayer booms above the crop.
However, these control systems are typically based on ultrasonic sensors mounted on the booms, which limits the accuracy of the measurements and the response of the controller to changes in the terrain, resulting in a sub-optimal spraying process. To overcome these limitations, we propose to use a laser scanner, attached to the front of the sprayer's cabin, to scan the ground surface in front of the vehicle and to build a scrolling 3d map of the terrain. We evaluate the proposed solution in a series of field tests, demonstrating that the approach provides a more detailed and accurate representation of the environment than the current sonar-based solution, and which can lead to the development of more efficient boom control systems
Adding New Tasks to a Single Network with Weight Transformations using Binary Masks
Visual recognition algorithms are required today to exhibit adaptive
abilities. Given a deep model trained on a specific, given task, it would be
highly desirable to be able to adapt incrementally to new tasks, preserving
scalability as the number of new tasks increases, while at the same time
avoiding catastrophic forgetting issues. Recent work has shown that masking the
internal weights of a given original conv-net through learned binary variables
is a promising strategy. We build upon this intuition and take into account
more elaborated affine transformations of the convolutional weights that
include learned binary masks. We show that with our generalization it is
possible to achieve significantly higher levels of adaptation to new tasks,
enabling the approach to compete with fine tuning strategies by requiring
slightly more than 1 bit per network parameter per additional task. Experiments
on two popular benchmarks showcase the power of our approach, that achieves the
new state of the art on the Visual Decathlon Challenge
Image and Sound Interpretation: Wilde, "The Harlot’s House"
Curatorial note from Digital Pedagogy in the Humanities: This assignment requires students to use multimedia digital technologies to communicate their analyses of a literary text in sensory and associative terms rather than in rational, linear forms of argument. By including terms like visceral, sensual, and intuit in the assignment, Petra Dierkes-Thrun signals that such subjective responses constitute a powerful component of text analysis. This project invokes image, video, and sound as primary modes of interpretation rather than as supplements to a written text. Having students (and Web site visitors outside the class) contribute multimedia responses to a particular poem transforms the course blog into a collaborative intertextual display which can then itself become the object of further investigation and analysis
Meta-Tracker: Fast and Robust Online Adaptation for Visual Object Trackers
This paper improves state-of-the-art visual object trackers that use online
adaptation. Our core contribution is an offline meta-learning-based method to
adjust the initial deep networks used in online adaptation-based tracking. The
meta learning is driven by the goal of deep networks that can quickly be
adapted to robustly model a particular target in future frames. Ideally the
resulting models focus on features that are useful for future frames, and avoid
overfitting to background clutter, small parts of the target, or noise. By
enforcing a small number of update iterations during meta-learning, the
resulting networks train significantly faster. We demonstrate this approach on
top of the high performance tracking approaches: tracking-by-detection based
MDNet and the correlation based CREST. Experimental results on standard
benchmarks, OTB2015 and VOT2016, show that our meta-learned versions of both
trackers improve speed, accuracy, and robustness.Comment: Code: https://github.com/silverbottlep/meta_tracker
Circannual Alterations in the Circadian Rhythm of Melatonin Secretion
To determine if a circadian rhythm known to be functionally related to the reproductive axis varies on a circannual basis, we monitored the circadian secretion of melatonin at monthly intervals for 2 years in four ovariectomized, estradiol-implanted ewes held in a constant short-day photoperiod. Prior to the study, ewes had been housed in a short-day (8L:16D) photoperiod for 4 years and were exhibiting circannual reproductive rhythms as assessed by serum luteinizing hormone (LH) levels. Three of the four sheep showed unambiguous deviations from the expected nocturnal melatonin secretion at two different times approximately 1 year apart. Nocturnal rises in melatonin, which usually last the duration of the dark phase, were delayed by 3-14 h or were missing. Altogether, five of the seven melatonin alterations observed in these three ewes occurred during the nadir of the circannual LH cycle. In the remaining ewe, we did not observe an altered melatonin secretory pattern during this period, and this ewe also failed to show a high amplitude circannual cycle of LH. The results provide evidence for a circannual change in the circadian rhythm of melatonin secretion. This alteration in melatonin secretion may serve as a "functional" change in daylength, and thereby may influence the expression of the circannual reproductive rhythm of sheep held in a fixed photoperiod for an extended time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68029/2/10.1177_074873049501000104.pd
Learning to Learn with Variational Information Bottleneck for Domain Generalization
Domain generalization models learn to generalize to previously unseen
domains, but suffer from prediction uncertainty and domain shift. In this
paper, we address both problems. We introduce a probabilistic meta-learning
model for domain generalization, in which classifier parameters shared across
domains are modeled as distributions. This enables better handling of
prediction uncertainty on unseen domains. To deal with domain shift, we learn
domain-invariant representations by the proposed principle of meta variational
information bottleneck, we call MetaVIB. MetaVIB is derived from novel
variational bounds of mutual information, by leveraging the meta-learning
setting of domain generalization. Through episodic training, MetaVIB learns to
gradually narrow domain gaps to establish domain-invariant representations,
while simultaneously maximizing prediction accuracy. We conduct experiments on
three benchmarks for cross-domain visual recognition. Comprehensive ablation
studies validate the benefits of MetaVIB for domain generalization. The
comparison results demonstrate our method outperforms previous approaches
consistently.Comment: 15 pages, 4 figures, ECCV202
Robots that can adapt like animals
As robots leave the controlled environments of factories to autonomously
function in more complex, natural environments, they will have to respond to
the inevitable fact that they will become damaged. However, while animals can
quickly adapt to a wide variety of injuries, current robots cannot "think
outside the box" to find a compensatory behavior when damaged: they are limited
to their pre-specified self-sensing abilities, can diagnose only anticipated
failure modes, and require a pre-programmed contingency plan for every type of
potential damage, an impracticality for complex robots. Here we introduce an
intelligent trial and error algorithm that allows robots to adapt to damage in
less than two minutes, without requiring self-diagnosis or pre-specified
contingency plans. Before deployment, a robot exploits a novel algorithm to
create a detailed map of the space of high-performing behaviors: This map
represents the robot's intuitions about what behaviors it can perform and their
value. If the robot is damaged, it uses these intuitions to guide a
trial-and-error learning algorithm that conducts intelligent experiments to
rapidly discover a compensatory behavior that works in spite of the damage.
Experiments reveal successful adaptations for a legged robot injured in five
different ways, including damaged, broken, and missing legs, and for a robotic
arm with joints broken in 14 different ways. This new technique will enable
more robust, effective, autonomous robots, and suggests principles that animals
may use to adapt to injury
Robust Trajectory Planning for Autonomous Parafoils under Wind Uncertainty
A key challenge facing modern airborne delivery systems, such as parafoils, is the ability to accurately and consistently deliver supplies into di cult, complex terrain. Robustness is a primary concern, given that environmental wind disturbances are often highly uncertain and time-varying, coupled with under-actuated dynamics and potentially narrow drop zones. This paper presents a new on-line trajectory planning algorithm that enables a large, autonomous parafoil to robustly execute collision avoidance and precision landing on mapped terrain, even with signi cant wind uncertainties. This algorithm is designed to handle arbitrary initial altitudes, approach geometries, and terrain surfaces, and is robust to wind disturbances which may be highly dynamic throughout the terminal approach. Explicit, real-time wind modeling and classi cation is used to anticipate future disturbances, while a novel uncertainty-sampling technique ensures that robustness to possible future variation is e ciently maintained. The designed cost-to-go function enables selection of partial paths which intelligently trade o between current and reachable future states. Simulation results demonstrate that the proposed algorithm reduces the worst-case impact of wind disturbances relative to state-of-the-art approaches.Charles Stark Draper Laborator
Mapping with Sparse Local Sensors and Strong Hierarchical Priors
The paradigm case for robotic mapping assumes large quantities of sensory information which allow the use of relatively weak priors. In contrast, the present study considers the mapping problem in environments where only sparse, local sensory information is available. To compensate for these weak likelihoods, we make use of strong hierarchical object priors. Hierarchical models were popular in classical blackboard systems but are here applied in a Bayesian setting and novelly deployed as a mapping algorithm. We give proof of concept results, intended to demonstrate the algorithm’s applicability as a part of a tactile SLAM module for the whiskered SCRATCHbot mobile robot platform
- …